Regional Sustainability ›› 2026, Vol. 7 ›› Issue (1): 100298.doi: 10.1016/j.regsus.2026.100298
• Full Length Article • Previous Articles Next Articles
LI Yupenga, CHEN Yaninga,b,*(
), WANG Feic, ZHANG Xiangd,e, ZHANG Qifeif, SUN Fana, FANG Gonghuana, Safarkhon SHAROFIDDINOVg, Jafar NIYAZOVh
Received:2025-07-31
Revised:2025-11-02
Accepted:2025-12-30
Published:2026-02-28
Online:2026-01-21
Contact:
CHEN Yaning
E-mail:chenyn@ms.xjb.ac.cn
LI Yupeng, CHEN Yaning, WANG Fei, ZHANG Xiang, ZHANG Qifei, SUN Fan, FANG Gonghuan, Safarkhon SHAROFIDDINOV, Jafar NIYAZOV. Risks of snow drought and impacts on streamflow in Tajikistan[J]. Regional Sustainability, 2026, 7(1): 100298.
Table 1
Basic information on the hydrological stations used in this study."
| GRDC station number | River | Station | Latitude | Longitude | Altitude (m a.s.l.) | Time span | Snowfall fraction |
|---|---|---|---|---|---|---|---|
| 2517500 | Yaghnob | Takfon | 39°10′48ʺN | 68°31′48ʺE | 1760 | 1978-1986 | 0.73 |
| 2517550 | Varzob | Dagana-Ata | 38°45′36ʺN | 68°48′36ʺE | 969 | 1978-1986 | 0.64 |
| 2517600 | Kofirnihon | Chinor | 38°34′48ʺN | 69°03′00ʺE | 980 | 1978-1986 | 0.61 |
| 2517800 | Langar | Mouth | 38°12′00ʺN | 72°39′36ʺE | 3240 | 1978-1986 | 0.90 |
| 2517920 | Vakhsh | Garm | 39°00′00ʺN | 70°19′48ʺE | 1316 | 1950-1986 | 0.75 |
Fig. 2.
Spatiotemporal distribution characteristics of the maximum snow water equivalent (SWEmax) in Tajikistan. (a), spatial distribution of the multi-year average of the SWEmax; (b), variation characteristics of the SWEmax along the elevation gradient; (c), spatial pattern of the SWEmax trend, with black dots indicating areas of statistically significant change (P<0.05); (d), elevation-dependent trend of the SWEmax. Note that the figure is based on the standard map (GS(2016)2967) issued by the Ministry of Natural Resources of the People’s Republic of China, and the boundary of the standard map used in this study has not been modified."
Fig. 3.
Snow drought frequency in Tajikistan. (a-d), spatial distribution of the frequency of total snow drought, warm snow drought, dry snow drought, and warm&dry snow drought, respectively; (e), frequency percentage of different snow drought types. Note that the figure is based on the standard map (GS(2016)2967) issued by the Ministry of Natural Resources of the People’s Republic of China, and the boundary of the standard map used in this study has not been modified."
Fig. 4.
Snow drought severity in Tajikistan. (a-d), spatial distribution of the severity of total snow drought, warm snow drought, dry snow drought, and warm&dry snow drought, respectively; (e), severity of different snow drought types. Note that the figure is based on the standard map (GS(2016)2967) issued by the Ministry of Natural Resources of the People’s Republic of China, and the boundary of the standard map used in this study has not been modified."
Fig. 5.
Frequency and mean severity of snow drought in relation to snowfall fraction. (a), correlation between frequency of total snow drought and snowfall fraction; (b), correlation between frequency of warm snow drought and snowfall fraction; (c), correlation between frequency of dry snow drought and snowfall fraction; (d), correlation between frequency of warm&dry snow drought and snowfall fraction; (e), correlation between severity of total snow drought and snowfall fraction; (f), correlation between severity of warm snow drought and snowfall fraction; (g), correlation between severity of dry snow drought and snowfall fraction; (h), correlation between severity of warm&dry snow drought and snowfall fraction."
Fig. 6.
Sensitivity of SWEmax to cold season temperature and precipitation. SWEmax anomaly values are represented by color gradients in percentiles, with the corresponding values given in the color bar. The larger dots represent the centroids of the ten SWEmax percentile bins. (a), 0.00≤snowfall fraction<0.20; (b), 0.20≤snowfall fraction<0.40; (c), 0.40≤snowfall fraction<0.60; (d), 0.60≤snowfall fraction<0.80; (e), 0.80≤snowfall fraction<1.00."
| [1] |
Barnett T.P., Adam J.C., Lettenmaier D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 438(7066), 303-309.
doi: 10.1038/nature04141 |
| [2] |
Berghuijs W.R., Wood R.A., Hrachowitz M.A., 2014. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nature Climate Change. 4, 583-586.
doi: 10.1038/nclimate2246 |
| [3] | Chartier-Rescan C., Wood R.R., Brunner M.I., et al., 2025. Snow drought propagation and its impacts on streamflow drought in the Alps. Environmental Research Letters. 20(5), 054032, doi: 10.1088/1748-9326/adc824. |
| [4] | Colombo N., Guyennon N., Valt M., et al., 2023. Unprecedented snow-drought conditions in the Italian Alps during the early 2020s. Environmental Research Letters. 18(7), 074014, doi: 10.1088/1748-9326/acdb88. |
| [5] | Cowherd M., Leung L.R., Girotto M., 2023. Evolution of global snow drought characteristics from 1850 to 2100. Environmental Research Letters. 18(6), 064043, doi: 10.1088/1748-9326/acd804. |
| [6] |
Dierauer J.R., Allen D.M., Whitfield P.H., 2019. Snow drought risk and susceptibility in the western United States and southwestern Canada. Water Resources Research. 55(4), 3076-3091.
doi: 10.1029/2018WR023229 |
| [7] |
Dietz A.J., Conrad C., Kuenzer C., et al., 2014. Identifying changing snow cover characteristics in Central Asia between 1986 and 2014 from remote sensing data. Remote Sensing. 6(12), 12752-12775.
doi: 10.3390/rs61212752 |
| [8] |
Fallah B., Didovets I., Rostami M., et al., 2024. Climate change impacts on Central Asia: Trends, extremes and future projections. International Journal of Climatology. 44(10), 3191-3213.
doi: 10.1002/joc.v44.10 |
| [9] | Fang Y.L., Leung L.R., 2023. Northern hemisphere snow drought in Earth system model simulations and ERA5-Land data in 1980-2014. Journal of Geophysical Research: Atmospheres. 128(23), e2023JD039308, doi: 10.1029/2023JD039308. |
| [10] | Gottlieb A.R., Mankin J.S., 2022. Observing, measuring, and assessing the consequences of snow drought. Bulletin of the American Meteorological Society. 103(4), E1041-E1060. |
| [11] |
Gottlieb A.R., Mankin J.S., 2024. Evidence of human influence on Northern Hemisphere snow loss. Nature. 625(7994), 293-300.
doi: 10.1038/s41586-023-06794-y |
| [12] | Gulahmadov N., Chen Y.N., Gulakhmadov M., et al., 2023. Assessment of temperature, precipitation, and snow cover at different altitudes of the Varzob River Basin in Tajikistan. Applied Sciences. 13(9), 5583, doi: 10.3390/app13095583. |
| [13] | Guo Y.H., Yang Y.T., Yang D.W., et al., 2025. Warming leads to both earlier and later snowmelt floods over the past 70 years. Nature Communications. 16(1), 3663, doi: 10.1038/s41467-025-58832-0. |
| [14] |
Han J.T., Liu Z.W., Woods R., et al., 2024. Streamflow seasonality in a snow-dwindling world. Nature. 629(8014), 1075-1081.
doi: 10.1038/s41586-024-07299-y |
| [15] | Han J.T., Yang Y.T., Guo Y.H., et al., 2025. Changes in snow drought and the impacts on streamflow across northern catchments. Water Resources Research. 61(1), e2024WR037492, doi: 10.1029/2024WR037492. |
| [16] |
Hugonnet R., McNabb R., Berthier E., et al., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature. 592(7856), 726-731.
doi: 10.1038/s41586-021-03436-z |
| [17] | Huning L.S., AghaKouchak A., 2020. Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences of the United States of America. 117(33), 19753-19759. |
| [18] |
Immerzeel W.W., Van Beek L.P.H., Bierkens M.F.P., 2010. Climate change will affect the Asian water towers. Science. 328(5984), 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
| [19] |
Kure S., Jang S., Ohara N., et al., 2013. Hydrologic impact of regional climate change for the snow-fed and glacier-fed river basins in the Republic of Tajikistan: Statistical downscaling of global climate model projections. Hydrological Processes. 27(26), 4071-4090.
doi: 10.1002/hyp.v27.26 |
| [20] |
Lehner B., Liermann C.R., Revenga C., et al., 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment. 9(9), 494-502.
doi: 10.1890/100125 |
| [21] | Li X.F., Wang S., 2022. Recent increase in the occurrence of snow droughts followed by extreme heatwaves in a warmer world. Geophysical Research Letters. 49(13), e2022GL099925, doi: 10.1029/2022GL099925. |
| [22] | Li Y.P., Sun F., Chen Y.N., et al., 2022. The continuing shrinkage of snow cover in High Mountain Asia over the last four decades. Science Bulletin. 20, 2064-2068. |
| [23] | Li Y.P., Chen Y.N., Sun F., et al., 2025. Warming triggers snowfall fraction loss thresholds in High-Mountain Asia. npj Climate and Atmospheric Science. 8(1), 52, doi: 10.1038/s41612-025-00935-y. |
| [24] |
Marshall A.M., Abatzoglou J.T., Link T.E., et al., 2019. Projected changes in interannual variability of peak snowpack amount and timing in the western United States. Geophysical Research Letters. 46(15), 8882-8892.
doi: 10.1029/2019GL083770 |
| [25] |
Muñoz-Sabater J., Dutra E., Agustí-Panareda A., et al., 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data. 13(9), 4349-4383.
doi: 10.5194/essd-13-4349-2021 |
| [26] |
Musselman K.N., Addor N., Vano J.A., et al., 2021. Winter melt trends portend widespread declines in snow water resources. Nature Climate Change. 11(5), 418-424.
doi: 10.1038/s41558-021-01014-9 |
| [27] |
Ombadi M., Risser M.D., Rhoades A.M., et al., 2023. Warming-induced reduction in snow fraction amplifies rainfall extremes. Nature. 619, 305-310.
doi: 10.1038/s41586-023-06092-7 |
| [28] |
Qin Y., Abatzoglou J.T., Siebert S., et al., 2022. Agricultural risks from changing snowmelt. Nature Climate Change. 10(5), 459-465.
doi: 10.1038/s41558-020-0746-8 |
| [29] |
Rounce D.R., Hock R., Maussion F., et al., 2023. Global glacier change in the 21st century: Every increase in temperature matters. Science. 379(6627), 78-83.
doi: 10.1126/science.abo1324 pmid: 36603094 |
| [30] |
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association. 63(324), 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
| [31] |
Siegfried T., Bernauer T., Guiennet R., et al., 2012. Will climate change exacerbate water stress in Central Asia? Climatic Change. 112, 881-899.
doi: 10.1007/s10584-011-0253-z |
| [32] | Wang C., Li Z., Guyennon N., et al., 2025. Patterns of snow drought under climate change: From dry to warm dominance. Geophysical Research Letters. 52(8), e2025GL114641, doi: 10.1029/2025GL114641. |
| [33] |
Zhang S.L., Zhou L.M., Zhang L., et al., 2022. Reconciling disagreement on global river flood changes in a warming climate. Nature Climate Change. 12, 1160-1167.
doi: 10.1038/s41558-022-01539-7 |
| [1] | CHEN Yaning, FANG Gonghuan, LI Zhi, ZHANG Xueqi, LI Weihong, Nekruz GULAHMADOV, Farhod NASRULLOEV, Aminjon GULAKHMADOV. Water resources and sustainable management in Tajikistan under global change [J]. Regional Sustainability, 2026, 7(1): 100291-. |
| [2] | Kobiljon Khushvakht KHUSHVAKHTZODA, Ilkhom Burkhonovich MAKHSUMOV, Muzaffar Boynazarovich KHOLNAZAROV, Irina Mikhailovna KIRPICHNIKOVA. Impact of green energy development on climate change mitigation [J]. Regional Sustainability, 2026, 7(1): 100292-. |
| [3] | Hikmat HISORIEV, LI Yaoming, HUANG Wenjun, FAN Lianlian, Mekhrovar OKHONNIYOZOV, MA Xuexi. Grassland ecosystems of Tajikistan: Plant species diversity, ecological restoration, and sustainable management [J]. Regional Sustainability, 2026, 7(1): 100293-. |
| [4] | ZHOU Yixin, MA Suliya, LI Wenjun, Parvina KURBONOVA, Mariyo BOBOEV, LI Yufan, Hikmat HISORIEV, MA Keping, YANG Weikang, ZHANG Yuanming. Vascular plant diversity and distribution pattern in Tajikistan: A global hotspot of diversity [J]. Regional Sustainability, 2026, 7(1): 100294-. |
| [5] | Ranna HAZIHAN, DU Hongru, HE Chuanchuan, Kobiljon Khushvakht KHUSHVAKHTZODA, Bobozoda KOMIL. Coupling dynamics of SDGs in Tajikistan from 2001 to 2023 [J]. Regional Sustainability, 2026, 7(1): 100295-. |
| [6] | XU Chunhai, LI Zhongqin, HE Zhonghua, WANG Feiteng, MU Jianxin, CHEN Yaning, Sheralizoda NAZRIALO, Farhod NASRULLOEV, Aminjon GULAHMADZODA. Current status and recent changes of glaciers in Tajikistan [J]. Regional Sustainability, 2026, 7(1): 100296-. |
| [7] | LI Chunlan, YU Yang, SUN Lingxiao, HE Jing, LU Yuanbo, GUO Zengkun, FANG Gonghuan, Alexandr ULMAN, Vitaliy SALNIKOV, Ireneusz MALIK, Małgorzata WISTUBA. Spatiotemporal heterogeneity of runoff in Tajikistan and its driving mechanisms under climate change [J]. Regional Sustainability, 2026, 7(1): 100297-. |
| [8] | Nasrulloev FARHOD, CHEN Yaning, Sheralizoda NAZRIALO, Gulahmadov NEKRUZ, Shobairi SEYED OMID REZA, Murodov MURODKHUJA. Hydrological change trends of the Surkhob and Khingov river basins in the Vakhsh River of Tajikistan under climate change [J]. Regional Sustainability, 2026, 7(1): 100300-. |
| [9] | Mahalingam Santhosh KUMAR, Narasimabhrathi Venkatesa PALANICHAMY, K. M. SHIVAKUMAR, Mani CHANDRAKUMAR, Muthuswamy KALPANA, Dhandapani MURUGANANTHI. Impact of climate change on global economy: A comprehensive review [J]. Regional Sustainability, 2025, 6(6): 100274-. |
| [10] | Yadeta BEDASA, Adeba GEMECHU, Amsalu BEDEMO. Combined adoption decisions of climate-smart agriculture and their impacts on maize yield in western Ethiopia [J]. Regional Sustainability, 2025, 6(6): 100280-. |
| [11] | Md Tauhid Ur RAHMAN, Adnan KHAIRULLAH. Integrating farmers’ perceptions and empirical climate data to assess agricultural productivity and food security in coastal Bangladesh [J]. Regional Sustainability, 2025, 6(5): 100259-. |
| [12] | Piyali KUMAR. Examining the effects of climatic and non-climatic factors on sectoral growth: Evidence from different country income groups [J]. Regional Sustainability, 2025, 6(5): 100261-. |
| [13] | Saira SHAFIQ, Muhammad ZIA UL HAQ, Syed Abbas RAZA NAQVI, Wardha SARFARAZ, Hina ALI, Muhammad Majid ISLAM, Gul Zaib HASSAN, Muhammad NAWAZ, Tasawer ABBAS. Integrating neglected and underutilized crops (NUCs) in South Asian cropping systems and diets: Challenges and prospects [J]. Regional Sustainability, 2025, 6(4): 100242-. |
| [14] | Md Maruf BILLAH, Mohammad Mahmudur RAHMAN, Santiago MAHIMAIRAJA, Alvin LAL, Asadi SRINIVASULU, Ravi NAIDU. Enhancing climate-smart coastal farming system through agriculture extension and advisory services towards the avenues of farm sustainability [J]. Regional Sustainability, 2025, 6(4): 100243-. |
| [15] | Syed Masiur RAHMAN, Asif RAIHAN, Md Shafiul ALAM, Shakhawat CHOWDHURY. Greenhouse gas emission dynamics and climate change mitigation efforts toward sustainability in the Middle East and North Africa (MENA) region [J]. Regional Sustainability, 2025, 6(4): 100246-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
REGSUS Wechat
新公网安备 65010402001202号