Regional Sustainability ›› 2025, Vol. 6 ›› Issue (4): 100242.doi: 10.1016/j.regsus.2025.100242cstr: 32279.14.REGSUS.2025022
• Review Article • Next Articles
Saira SHAFIQa, Muhammad ZIA UL HAQb,c,*(), Syed Abbas RAZA NAQVIb, Wardha SARFARAZa, Hina ALIa, Muhammad Majid ISLAMb, Gul Zaib HASSANb, Muhammad NAWAZd, Tasawer ABBASe
Received:
2024-10-28
Revised:
2025-03-24
Published:
2025-08-30
Online:
2025-09-15
Contact:
Muhammad ZIA UL HAQ
E-mail:zia.haq@uaf.edu.pk
Saira SHAFIQ, Muhammad ZIA UL HAQ, Syed Abbas RAZA NAQVI, Wardha SARFARAZ, Hina ALI, Muhammad Majid ISLAM, Gul Zaib HASSAN, Muhammad NAWAZ, Tasawer ABBAS. Integrating neglected and underutilized crops (NUCs) in South Asian cropping systems and diets: Challenges and prospects[J]. Regional Sustainability, 2025, 6(4): 100242.
Table 1
Neglected and underutilized crops (NUCs) in South Asia and their potential benefits."
NUCs | Example | Importance |
---|---|---|
Cereals and pseudo cereals | Finger millet, kodo millet, foxtail millet, little millet, amaranth, buckwheat, barnyard millet, proso millet, and quinoa | Both livestock and humans can benefit greatly from eating cereals. Millets are an excellent source of calcium, iron, potassium, magnesium, zinc, and other nutrients (Hassan et al., |
Legumes | Adzuki bean, lima bean, rice bean, cowpea, velvet bean, snap bean, sword bean, mung bean, chickpea, lablab bean, and moth bean | Legumes can be used to address the increasing need for vegetable oil and protein for humans. These crops can also be good for soils since they can tolerate intercropping and rotational cropping (Bhadkaria et al., |
Root and tuber crops | Taro, arrowroot, greater yam, Asiatic yam, tannia, edible canna, elephant yam, mealy kudzu, Chinese yam, yam, and cassava | Root and tuber crops, as primary food sources, have better adaptability to a wide range of soil and atmospheric conditions as well as farming methods with little agricultural inputs, and can bring significant production benefits (Scott, |
Table 2
Nutritional profile of NUCs and major cereal crops."
Nutritional profile | NUC | Major cereal crop | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Finger millet | Foxtail millet | Kodo millet | Adzuki bean | Lima bean | Rice bean | Mung bean | Cowpea | Rice | Wheat | |
Energy (kcal/100 g) | 328.0 | 331.0 | 309.0 | 128.0 | 185.0 | 451.2 | 30.0 | 116.0 | 345.0 | 346.0 |
Protein (mg/100 g) | 7300 | 1230 | 8300 | 7520 | 10,000 | 17,680 | 3000 | 7700 | 6800 | 12,100 |
Fat (mg/100 g) | 1300 | 4300 | 1400 | 163 | 600 | 19760 | 200 | 500 | 400 | 1700 |
Calcium (mg/100 g) | 344.00 | 31.00 | 2.70 | 28.00 | 54.00 | 47.60 | 132.00 | 110.00 | 10.00 | 48.00 |
Iron (mg/100 g) | 3.90 | 2.80 | 0.50 | 4.98 | 3.00 | 4.50 | 0.90 | 8.20 | 3.20 | 4.90 |
Zinc (mg/100 g) | 2.30 | 2.40 | 0.70 | 5.04 | 1.20 | 0.47 | 3.30 | 3.37 | 1.40 | 2.20 |
Thiamin (vitamin B1) (mg/100 g) | 0.420 | 0.590 | 0.330 | 1.770 | 0.507 | 0.570 | 0.100 | 0.200 | 0.060 | 0.490 |
Riboflavin (vitamin B2) (mg/100 g) | 0.190 | 0.110 | 0.100 | 0.720 | 0.202 | 0.400 | 0.254 | 1.800 | 0.060 | 0.170 |
Fiber (mg/100 g) | 3600 | 8000 | 9800 | 7300 | 9000 | 3000 | 1800 | 6500 | 200 | 1200 |
[1] | Abbas G., Ahmad S., Ahmad A., et al., 2017. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 247, 42-55. |
[2] | Aderibigbe O.R., Ezekiel O.O., Owolade S.O., et al., 2022. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 62(3), 656-669. |
[3] | Adhikari L., Hussain A., Rasul G., 2017. Tapping the potential of neglected and underutilized food crops for sustainable nutrition security in the mountains of Pakistan and Nepal. Sustainability. 9(2), 291, doi: 10.3390/su9020291. |
[4] |
Akinola R., Pereira L.M., Mabhaudhi T., et al., 2020. A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. Sustainability. 12(8), 3493, doi: 10.3390/su12083493.
pmid: 33520291 |
[5] |
Akpojotor U., Oluwole O., Oyatomi O., et al., 2025. Research and developmental strategies to hasten the improvement of orphan crops. GM Crops Food. 16(1), 46-71.
doi: 10.1080/21645698.2024.2423987 pmid: 39718143 |
[6] | Ali A., Bhattacharjee B., 2023. Nutrition security, constraints, and agro-diversification strategies of neglected and underutilized crops to fight global hidden hunger. Front. Nutr. 10, 1144439, doi: 10.3389/fnut.2023.1144439. |
[7] | Aryal J.P., Sapkota T.B., Khurana R., et al., 2020. Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environmental Development and Sustainability. 22, 5045-5075. |
[8] | Aziz N., He J., Raza A., et al., 2021. Elucidating the macroeconomic determinants of undernourishment in South Asian countries: Building the framework for action. Front. Public Health. 9, 696789, doi: 10.3389/fpubh.2021.696789. |
[9] | Bhadkaria A., Narvekar D.T., Gupta N., et al., 2022. Moth bean (Vigna aconitifolia (Jacq.) Marechal) seeds: A review on nutritional properties and health benefits. Discovery Food. 2, 18, doi: 10.1007/s44187-022-00019-3. |
[10] | Bogdanski A., 2012. Integrated food-energy systems for climate-smart agriculture. Agriculture Food Security. 1, 9, doi: 10.1186/2048-7010-1-9. |
[11] | Chávez-Dulanto P.N., Thiry A.A., Glorio-Paulet P., et al., 2021. Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur. 10(1), 259, doi: 10.1002/fes3.259. |
[12] | Chimonyo V.G.P., Chibarabada T.P., Choruma D.J., et al., 2022. Modelling neglected and underutilized crops: A systematic review of progress, challenges, and opportunities. Sustainability. 14, 13931, doi: 10.3390/su142113931. |
[13] | El-Sayed A., Kamel M., 2020. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 27(18), 22336-22352. |
[14] | ESSRG(Environmental Social Science Research Group), 2021. Environmental Social Science Research Group. RADIANT Project Encourages Agrobiodiversity and Battles the Monoculture Paradigm. [2024-09-01]. https://www.essrg.hu/en/radiant-project-encourages-agrobiodiversity-and-battles-the-monoculture-paradigm/. |
[15] | FAO (Food and Agriculture Organization of the United Nations), 2023a. The Plants that Feed the World. [2024-09-01]. https://www.fao.org/newsroom/story/The-plants-that-feed-the-world/en. |
[16] | FAO, 2023b. International Year of Millets 2023. [2024-09-01]. https://www.icrisat.org/storage/file-managers/file-66f654f1614ca3.48559673.pdf. |
[17] | Ghosh S., Meyer-Rochow V.B., Jung C., 2023. Embracing tradition: The vital role of traditional foods in achieving nutrition security. Foods. 12(23), 4220, doi: 10.3390/foods12234220. |
[18] | Goel K., Kundu P., Gahlaut V., et al., 2023. Functional divergence of Heat Shock Factors (Hsfs) during heat stress and recovery at the tissue and developmental scales in C4 grain amaranth (Amaranthus hypochondriacus). Front. Plant Sci. 14, 1151057, doi: 10.3389/fpls.2023.1151057. |
[19] | Goulart R.Z., Reichert J.M., Rodrigues M.F., 2020. Cropping poorly-drained lowland soils: Alternatives to rice monoculture, their challenges and management strategies. Agric. Sys. 177, 102715, doi: 10.1016/j.agsy.2019.102715. |
[20] | Grote U., Fasse A., Nguyen T.T., et al., 2021. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 4, 617009, doi: 10.3389/fsufs.2020.617009. |
[21] | Gruère G., Giuliani A., Smale M., 2006. Marketing Underutilized Plant Species for the Benefit of the Poor: A Conceptual Framework. Washington: International Food Policy Research Institute, 1-54. |
[22] | Gupta S.M., Arora S., Mirza N., et al., 2017. Finger millet: A “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front. Plant Sci. 8, 643, doi: 10.3389/fpls.2017.00643. |
[23] | Habib-ur-Rahman M., Ahmad A., Raza A., et al., 2022. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13, 925548, doi: 10.3389/fpls.2022.925548. |
[24] | Harish M.S., Bhuker A., Chauhan B.S., 2024. Millet production, challenges, and opportunities in the Asia-Pacific region: a comprehensive review. Front. Sustain. Food Syst. 8, 1386469, doi: 10.3389/fsufs.2024.1386469. |
[25] | Hassan Z.M., Sebola N.A., Mabelebele M., 2021. The nutritional use of millet grain for food and feed: A review. Agric. Food Secur. 10, 16, doi: 10.1186/s40066-020-00282-6. |
[26] | Horizon Europe, 2024. New Sustainable Business and Production Models for Farmers and Rural Communities. [2024-09-17]. https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL6-2024-COMMUNITIES-02-2-two-stage. |
[27] | ICRISAT(International Crops Research Institute for the Semi-Arid Tropics), 2003. Alternative Uses of Sorghum and Pearl Millet in Asia. [2024-09-17]. https://oar.icrisat.org/3555/1/AlternativeUses.pdf. |
[28] | Ifeh C., 2024. How AI Can Expedite Underutilized Crop Innovation for Mitigating Climate Change. [2024-09-17]. https://www.climaterealityproject.org/blog/how-ai-can-expedite-underutilized-crop-innovation-mitigating-climate-change. |
[29] | Ikhajiagbe B., Ogwu M.C., Ogochukwu O.F., et al., 2022. The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria. Crit. Rev. Food Sci. Nutr. 62(14), 3930-3938. |
[30] | IPCC (Intergovernmental Panel on Climate Change), 2014. The IPCC’s Fifth Assessment Report. What’s in It for South Asia? [2024-09-17]. https://innovation.brac.net/fif2016/images/library/CDKN-IPCC-Whats-in-it-for-South-Asia-AR5.pdf. |
[31] | Jaenicke H., Lengkeek A., 2006. Marketing the products of underutilized crops-challenges and opportunities for pro-poor economic development. In: XXVII International Horticultural Congress-IHC, 2006: International Symposium on Cultivation and Utilization of Asian. Seoul, Korea. |
[32] | Jagdale Y.D., Mahale S.V., Zohra B., et al., 2021. Nutritional profile and potential health benefits of super foods: A review. Sustainability. 13(16), 9240, doi: 10.3390/su13169240. |
[33] | Jang J.A., Oh J.E., Na Y., et al., 2021. Emotions evoked by colors and health functionality information of colored rice: A cross-cultural study. Foods. 10(2), 231, doi: 10.3390/foods10020231. |
[34] | Jayathilake C., Visvanathan R., Deen A., et al., 2018. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 98(13), 4793-4806. |
[35] | Joshi B.K., Shrestha R., Gauchan D., et al., 2020. Neglected, underutilized, and future smart crop species in Nepal. J. Crop Improv. 34(3), 291-313. |
[36] | Joshi B.K., Mainali R.P., Bhandari S., et al., 2023. Neglected and underutilized crop species of Nepal: Smart foods for uncertain future. J. Agric. Environ. 24, 187-196. |
[37] | Karunaratne A.S., Wimalasiri E.M., Esham M., et al., 2024. Editorial: Crop modelling-underutilized crops for climate-smart agrifood systems. Front. Sustain. Food Syst. 8, 1305909, doi: 10.3389/fsufs.2024.1305909. |
[38] | Kumar A., Anju T., Kumar S., et al., 2021. Integrating omics and gene editing tools for rapid improvement of traditional food plants for diversified and sustainable food security. National Library of Medicine. 22(15), 8093, doi: 10.3390/ijms22158093. |
[39] | Kunene S., Odindo A., Gerrano A., et al., 2022. Screening bambara groundnut (Vigna subterranea L. Verdc) genotypes for drought tolerance at the germination stage under simulated drought conditions. Plants. 11, 3562, doi: 10.3390/plants11243562. |
[40] | Lambers H., de Britto Costa P., Oliveira R.S., et al., 2020. Towards more sustainable cropping systems: Lessons from native Cerrado species. Theor. Exp. Plant Physiol. 32(3), 175-194. |
[41] | Li X., Siddique K.H.M., 2018. Future Smart Food-Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia. Bangkok: FAO, 242. |
[42] | Li X., Yadav R., Siddique K.H.M., 2020. Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Front. Nutr. 7, 593711, doi: 10.3389/fnut.2020.593711. |
[43] | Mabhaudhi T., Hlahla S., Chimonyo V.G.P., et al., 2022. Diversity and diversification: Ecosystem services derived from underutilized crops and their co-benefits for sustainable agricultural landscapes and resilient food systems in Africa. Front. Agron. 4, 859223, doi: 10.3389/fagro.2022.859223. |
[44] | Malézieux E., Verger E.O., Avallone S., et al., 2024. Biofortification versus diversification to fight micronutrient deficiencies: An interdisciplinary review. Food Secur. 16(1), 261-275. |
[45] | MassChallenge, 2023. Agriculture Innovation: 10 Tech Trends to Watch in 2023. [2024-09-17]. https://masschallenge.org/articles/agriculture-innovation/. |
[46] | Mir N.A., Riar C.S., Singh S., 2018. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci. Technol. 75, 170-180. |
[47] | Mohyuddin S.G., Riaz A., Qamar A., et al., 2019. Quinoa is beneficial to the comprehensive nutritional value of potential health. Pak. J. Sci. 70, 69-74. |
[48] | Mottaleb K.A., Rejesus R.M., Murty M.V.R., et al., 2017. Benefits of the development and dissemination of climate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitig. Adapt. Strateg. Glob. Chang. 22, 879-901. |
[49] | Mudau F.N., Chimonyo V.G.P., Modi A.T., et al., 2022. Neglected and underutilized crops: A systematic review of their potential as food and herbal medicinal crops in South Africa. Front. Pharmacol. 12, 809866, doi: 10.3389/fphar.2021.809866. |
[50] | Mugiyo H., Chimonyo V.G., Sibanda M., et al., 2021. Multi-criteria suitability analysis for neglected and underutilized crop species in South Africa. PLoS One. 16(1), e0259427, doi: 10.1371/journal.pone.0244734. |
[51] | Musokwa M., Mafongoya P., 2021. Pigeonpea yield and water use efficiency: A savior under climate change-induced water stress. Agronomy. 11, 5, doi: 10.3390/agronomy11010005. |
[52] | Neupane D., Adhikari P., Bhattarai D., et al., 2022. Does climate change affect the yield of the top three cereals and food security in the world? Earth. 3(1), 45-71. |
[53] |
Nguyen V., Riley S., Nagel S., et al., 2020. Common vetch: A drought tolerant, high protein neglected leguminous crop with potential as a sustainable food source. Front. Plant Sci. 11, 818, doi: 10.3389/fpls.2020.00818.
pmid: 32636858 |
[54] | Noort M.W., Renzetti S., Linderhof V., et al., 2022. Towards sustainable shifts to healthy diets and food security in sub-Saharan Africa with climate-resilient crops in bread-type products: A food system analysis. Foods. 11(2), 135, doi: 10.3390/foods11020135. |
[55] | Ojuederie O.B., Igwe D.O., Ludidi N.N., et al., 2024. Editorial: Neglected and underutilized crop species for sustainable food and nutritional security: Prospects and hidden potential. Front. Plant Sci. 14, 1358220, doi: 10.3389/fpls.2023.1358220. |
[56] | Perelli C., Cacchiarelli L., Peveri V., et al., 2024. Gender equality and sustainable development: A cross-country study on women’s contribution to the adoption of the climate-smart agriculture in Sub-Saharan Africa. Ecol. Econ. 219, 108145, doi: 10.1016/j.ecolecon.2024.108145. |
[57] | Porcuna-Ferrer A., Calvet-Mir L., Faye N.F., et al., 2024. Drought-tolerant indigenous crop decline in the face of climate change: A political agroecology account from south-eastern Senegal. J. Rural Stud. 105, 103163, doi: 10.1016/j.jrurstud.2023.103163. |
[58] | Raimondo M., Nazzaro C., Marotta G., et al., 2021. Land degradation and climate change: Global impact on wheat yields. Land Degrad. Dev. 32(1), 387-398. |
[59] | Rasul G., 2016. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 18, 14-25. |
[60] | Ray A., Ray R., 2022. The leafy greens of India-their diversity, pattern of consumption, and overriding implication on food and nutrition security. Agroecol. Sustain. Food Syst. 46(3), 432-451. |
[61] | Ren G.X., Teng C., Fan X., et al., 2023. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chem. 410, 135290, doi: 10.1016/j.foodchem.2022.135290. |
[62] |
Saini S., Saxena S., Samtiya M., et al., 2021. Potential of underutilized millets as Nutri-cereal: An overview. J. Food Sci. Technol. 58, 4465-4477.
doi: 10.1007/s13197-021-04985-x pmid: 34629510 |
[63] | Salis S., Virmani A., Priyambada L., et al., 2021. ‘Old Is Gold’: How traditional Indian dietary practices can support pediatric diabetes management. Nutrients. 13(12), 4427, doi: 10.3390/nu13124427. |
[64] | Scott G.J., 2021. A review of root, tuber and banana crops in developing countries: Past, present and future. Int. J. Food Sci. Technol. 56(3), 1093-1114. |
[65] | Semba R.D., Ramsing R., Rahman N., et al., 2021. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 28, 100520, doi: 10.1016/j.gfs.2021.100520. |
[66] | Shahrajabian M.H., 2019. A short review of health benefits and nutritional values of mung bean in sustainable agriculture. Pol. J. Agron. 37, 31-36. |
[67] | Shrestha N., Hu H., Shrestha K., et al., 2023. Pearl millet response to drought: A review. Front. Plant Sci. 14, 1059574, doi: 10.3389/fpls.2023.1059574. |
[68] | Siddique K.H., Li X., Gruber K., 2021. Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nat. Plants. 7, 116-122. |
[69] | Silva B.Q., Kancirova E., Zdravkovic M., et al., 2024. Sustainable food chains designed for optimized resource use: Optimizing downscaled food chains for sustainable resource use: A comprehensive case study on tomato juice. J. Clean. Prod. 450, 141879, doi: 10.1016/j.jclepro.2024.141879. |
[70] | Soumare A., Diedhiou A.G., Kane A., 2022. Bambara groundnut: A neglected and underutilized climate-resilient crop with great potential to alleviate food insecurity in sub-Saharan Africa. J. Crop Improv. 36(5), 747-767. |
[71] | Thattantavide A., Kumar A., 2023. Utilization of wild food plants for crop improvement programs. In: Kumar, A., Singh, P., Singh, S., (eds.). Wild Food Plants for Zero Hunger and Resilient Agriculture. Singapore: Springer Nature, 259-288. |
[72] | Vaivada T., Akseer N., Akseer S., et al., 2020. Stunting in childhood: An overview of global burden, trends, determinants, and drivers of decline. Am. J. Clin. Nutr. 112, 777S-791S. |
[73] | Waha K., Dietrich J.P., Portmann F.T., et al., 2020. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change. 64, 102131, doi: 10.1016/j.gloenvcha.2020.102131. |
[74] | Wambi W., Otienno G., Tumwesigye W., et al., 2021. Genetic and genomic resources for finger millet improvement: Opportunities for advancing climate-smart agriculture. J. Crop Improv. 35(2), 204-233. |
[75] | Wijesuriya A.P., Pallemulla S., Thavarajah D., et al., 2013. Nutritional Impact of Iron Rich Lentil Diet on Iron Deficient Anemic Children in Sri Lanka. Colombo: Lady Ridgeway Hospital. |
[76] | Will M., 2008. Promoting Value Chains of Neglected and Underutilized Species for Pro-Poor Growth and Biodiversity Conservation: Guidelines and Good Practices. [2024-09-17]. https://cgspace.cgiar.org/server/api/core/bitstreams/456bcc3d-1f1a-4af1-8492-63010e138c2e/content. |
[77] | Yellavila S.B., Agbenorhevi J.K., Asibuo J.Y., et al., 2015. Proximate composition, minerals content and functional properties of five Lima bean accessions. J. Food Secur. 3(3), 69-94. |
[78] | Zhang W.P., Surigaoge S., Yang H., et al., 2024. Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant Soil. 502, 7-30. |
[79] | Zhao J.F., Liu D.S., Huang R.X., 2023. A review of climate-smart agriculture: Recent advancements, challenges, and future directions. Sustainability. 15(4), 3404, doi: 10.3390/su15043404. |
[80] | Zhu F., 2021. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci. Technol. 110, 155-167. |
[1] | Md Maruf BILLAH, Mohammad Mahmudur RAHMAN, Santiago MAHIMAIRAJA, Alvin LAL, Asadi SRINIVASULU, Ravi NAIDU. Enhancing climate-smart coastal farming system through agriculture extension and advisory services towards the avenues of farm sustainability [J]. Regional Sustainability, 2025, 6(4): 100243-. |
[2] | Syed Masiur RAHMAN, Asif RAIHAN, Md Shafiul ALAM, Shakhawat CHOWDHURY. Greenhouse gas emission dynamics and climate change mitigation efforts toward sustainability in the Middle East and North Africa (MENA) region [J]. Regional Sustainability, 2025, 6(4): 100246-. |
[3] | Olani Bekele SAKILU, CHEN Haibo. Exploring the influence of trade openness, energy consumption, natural resource rents, and human capital in achieving carbon neutrality [J]. Regional Sustainability, 2025, 6(4): 100247-. |
[4] | Mohammad Reza PAKRAVAN-CHARVADEH, Jeyran CHAMCHAM, Rahim MALEKNIA. How climate change adaptation strategies and climate migration interact to control food insecurity? [J]. Regional Sustainability, 2025, 6(3): 100229-. |
[5] | Ivette Gnitedem KEUBENG, George Achu MULUH, Vatis Christian KEMEZANG. Controlling agricultural product price volatility: An empirical analysis from Cameroon [J]. Regional Sustainability, 2025, 6(2): 100215-. |
[6] | Osama AHMED, Mourad FAIZ, Laamari ABDELALI, Safwa KHOALI, Cataldo PULVENT, Sameh MOHAMED, Mame Samba MBAYE, Thomas GLAUBEN. Unlocking climate change resilience: Socioeconomic factors shaping smallholder farmers’ perceptions and adaptation strategies in Mediterranean and Sub-Saharan Africa regions [J]. Regional Sustainability, 2025, 6(1): 100195-. |
[7] | Felix KPENEKUU, Philip ANTWI-AGYEI, Fred NIMOH, Andrew DOUGILL, Albert BANUNLE, Jonathan ATTA-AIDOO, Frank BAFFOUR-ATA, Thomas Peprah AGYEKUM, Godfred ADDAI, Lawrence GUODAAR. Cost and benefit analysis of Climate-Smart Agriculture interventions in the dryland farming systems of northern Ghana [J]. Regional Sustainability, 2025, 6(1): 100196-. |
[8] | MA Xing, QIANG Wenli, WANG Shijin, LIU Jiayi, Arunima MALIK, LI Mengyu, WANG Xiang. Evolutionary characteristics of export trade network in the Arctic region [J]. Regional Sustainability, 2024, 5(4): 100176-. |
[9] | Septri WIDIONO, Ekawati Sri WAHYUNI, Lala M. KOLOPAKING, Arif SATRIA. Livelihood vulnerability of indigenous people to climate change around the Kerinci Seblat National Park in Bengkulu, Indonesia [J]. Regional Sustainability, 2024, 5(4): 100181-. |
[10] | Issa NYASHILU, Robert KIUNSI, Alphonce KYESSI. Climate change vulnerability assessment in the new urban planning process in Tanzania [J]. Regional Sustainability, 2024, 5(3): 100155-. |
[11] | Homayoon RAOUFI, Hamidreza JAFARI, Wakil Ahmad SARHADI, Esmail SALEHI. Assessing the impact of climate change on agricultural production in central Afghanistan [J]. Regional Sustainability, 2024, 5(3): 100156-. |
[12] | Frank BAFFOUR-ATA, Louisa BOAKYE, Moses Tilatob GADO, Ellen BOAKYE-YIADOM, Sylvia Cecilia MENSAH, Senyo Michael KWAKU KUMFO, Kofi Prempeh OSEI OWUSU, Emmanuel CARR, Emmanuel DZIKUNU, Patrick DAVIES. Climatic and non-climatic factors driving the livelihood vulnerability of smallholder farmers in Ahafo Ano North District, Ghana [J]. Regional Sustainability, 2024, 5(3): 100157-. |
[13] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
[14] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[15] | Suchitra PANDEY, Geetilaxmi MOHAPATRA, Rahul ARORA. Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India [J]. Regional Sustainability, 2024, 5(2): 100143-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||