Regional Sustainability ›› 2026, Vol. 7 ›› Issue (1): 100297.doi: 10.1016/j.regsus.2026.100297
• Full Length Article • Previous Articles Next Articles
LI Chunlana,b,c, YU Yanga,b,d, SUN Lingxiaoa,c,*(
), HE Jinga,c, LU Yuanboa,d, GUO Zengkuna,d, FANG Gonghuana,d, Alexandr ULMANe, Vitaliy SALNIKOVe, Ireneusz MALIKc, Małgorzata WISTUBAc
Received:2025-10-14
Revised:2025-12-24
Accepted:2026-01-04
Published:2026-02-28
Online:2026-01-21
Contact:
SUN Lingxiao
E-mail:sunlx@ms.xjb.ac.cn
LI Chunlan, YU Yang, SUN Lingxiao, HE Jing, LU Yuanbo, GUO Zengkun, FANG Gonghuan, Alexandr ULMAN, Vitaliy SALNIKOV, Ireneusz MALIK, Małgorzata WISTUBA. Spatiotemporal heterogeneity of runoff in Tajikistan and its driving mechanisms under climate change[J]. Regional Sustainability, 2026, 7(1): 100297.
Fig. 1.
Spatial distribution of DEM (a), precipitation (b), potential evapotranspiration (c), maximum temperature (d), basin (e), and glacier (f) in Tajikistan. DEM, digital elevation model. Note that the figure is based on the standard map (GS(2025)1508) of the Map Service System (http://bzdt.ch.mnr.gov.cn/download.html) marked by the Ministry of Natural Resources of the People’s Republic of China, and the boundary of the standard map has not been modified."
Table 1
Theil-Sen’s slope estimation and Mann-Kendall (M-K) trend analysis classification"
| No. | S | |Z| | Change trend |
|---|---|---|---|
| 1 | S<0 | |Z|≥2.58 | Extremely significant decrease |
| 2 | S<0 | 1.96≤|Z|<2.58 | Significant decrease |
| 3 | S<0 | |Z|<1.96 | Non-significant decrease |
| 4 | S>0 | |Z|≥2.58 | Extremely significant increase |
| 5 | S>0 | 1.96≤|Z|<2.58 | Significant increase |
| 6 | S>0 | |Z|<1.96 | Non-significant increase |
Table 2
Annual and seasonal average runoff variation degree and its area proportion in Tajikistan during 2000-2024."
| Coefficient of variation | Runoff variation degree | Area percentage of average runoff with different runoff degrees (%) | ||||
|---|---|---|---|---|---|---|
| Annual average runoff | Spring average runoff | Summer average runoff | Autumn average runoff) | Winter average runoff | ||
| CV<0.3 | Low variability | 13.50 | 1.59 | 5.52 | - | 0.64 |
| 0.3≤CV<0.6 | Moderate variability | 51.77 | 32.51 | 45.63 | 59.03 | 1.94 |
| 0.6≤CV<1.0 | High variability | 30.80 | 34.63 | 26.46 | 28.06 | 17.44 |
| CV≥1.0 | Extremely high variability | 3.93 | 23.35 | 22.26 | 12.54 | 21.72 |
Fig. 6.
Annual and seasonal variation trends of precipitation (a1), potential evapotranspiration (b1), maximum temperature (c1), and minimum temperature (d1), as well as the relationships of runoff with precipitation (a2), potential evapotranspiration (b2), maximum temperature (c2), and minimum temperature (d2) in Tajikistan during 2000-2024. The shaded region in the figure represents the 95% confidence interval."
Fig. 7.
Spatial distribution of the correlation degree (based on the Pearson correlation coefficient) of runoff with precipitation (a), potential evapotranspiration (b), maximum temperature (c), and minimum temperature (d) in Tajikistan during 2000-2024. Pie chart represents the area percentage of each correlation degree."
Fig. 8.
Spatial distribution of correlation degree (based on the Spearman rank correlation coefficient) of runoff with precipitation (a), potential evapotranspiration (b), maximum temperature (c), and minimum temperature (d) in Tajikistan during 2000-2024. Bar chart represents the area percentage of each correlation degree."
| [1] |
Abghari H., Tabari H., Hosseinzadeh Talaee P., 2013. River flow trends in the west of Iran during the past 40 years: Impact of precipitation variability. Global and Planetary Change. 101, 52-60.
doi: 10.1016/j.gloplacha.2012.12.003 |
| [2] |
Ahmed K., Shahid S., Chung E.S., et al., 2017. Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Climate Research. 74, 95-107.
doi: 10.3354/cr01489 |
| [3] |
Aizen V.B., Aizen E.M., Kuzmichenok V.A., 2007. Geo-informational simulation of possible changes in Central Asian water resources. Global and Planetary Change. 56(3), 341-358.
doi: 10.1016/j.gloplacha.2006.07.020 |
| [4] | Ali R., Kuriqi A., Abubaker S., et al., 2019. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water. 11(9), 1855, doi: 10.3390/w11091855. |
| [5] |
Brun F., Berthier E., Wagnon P., et al., 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience. 10(9), 668-673.
doi: 10.1038/ngeo2999 |
| [6] |
Chang Z.H., Gao H.K., Yong L.L., et al., 2023. Projected future changes in cryosphere and hydrology of a mountainous catchment in the Upper Heihe River, China. Hydrology and Earth System Sciences. 28(16), 1-43.
doi: 10.5194/hess-28-1-2024 |
| [7] | Chen Y.N., Li Z., Fang G.H., et al., 2017. Impact of climate change on water resources in the Tianshan Mountains, Central Asia. Acta Geographica Sinica. 72(1), 18-26 (in Chinese). |
| [8] |
Chen Y.N., Li Z., Fang G.H., et al., 2018. Large hydrological processes changes in the transboundary rivers of Central Asia. Journal of Geophysical Research: Atmospheres. 123(10), 5059-5069.
doi: 10.1029/2017JD028184 |
| [9] |
Deng H.J., Chen Y.N., Wang H.J., et al., 2015. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Global and Planetary Change. 135, 28-37.
doi: 10.1016/j.gloplacha.2015.09.015 |
| [10] |
Duan Y.J., He Y., Zhao J., et al., 2023. Analysis of impact of human activities on runoff changes in Yue River Basin of the Qinling Mountains. Arid Zone Research. 40(4), 605-614 (in Chinese).
doi: 10.13866/j.azr.2023.04.09 |
| [11] |
Hagg W., Hoelzle M., Wagner S., et al., 2013. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global and Planetary Change. 110, 62-73.
doi: 10.1016/j.gloplacha.2013.05.005 |
| [12] |
Hu Z.Y., Zhou Q.M., Chen X., et al., 2017. Variations and changes of annual precipitation in Central Asia over the last century. International Journal of Climatology. 37(5), 157-170.
doi: 10.1002/joc.2017.37.issue-S1 |
| [13] |
Hugonnet R., McNabb R., Berthier E., et al., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature. 592(7856), 726-731.
doi: 10.1038/s41586-021-03436-z |
| [14] |
Huss M., Hock R., 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change. 8(2), 135-140.
doi: 10.1038/s41558-017-0049-x |
| [15] |
Immerzeel W.W., Van Beek L.P., Bierkens M.F., 2010. Climate change will affect the Asian water towers. Science. 328(5984), 1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
| [16] |
Immerzeel W.W., Lutz A.F., Andrade M., et al., 2020. Importance and vulnerability of the world’s water towers. Nature. 577(7790), 364-369.
doi: 10.1038/s41586-019-1822-y |
| [17] | IPCC (Intergovernmental Panel on Climate Change), 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report. Cambridge: Cambridge University Press. |
| [18] | Islam A.R.M.T., Al Awadh M., Mallick J., et al., 2023. Estimating ground-level PM2.5 using subset regression model and machine learning algorithms in Asian megacity, Dhaka, Bangladesh. Air Quality, Atmosphere & Health. 16(6), 1117-1139. |
| [19] | Jiang Y.Q., Wang L.C., Xie T.N., et al., 2025. Study on the effect of underlying surface changes on runoff generation in the urbanized watershed. Scientific Reports. 15(1), 15056, doi: 10.1038/s41598-025-95295-1. |
| [20] | Jiayinaguli W., Wu Y.F., Batur B., et al., 2013. Climate warming trend of Tajikistan in the past 100 years. Plateau and Mountain Meteorology Research. 33(3), 48-54 (in Chinese). |
| [21] |
Karthe D., Chalov S., Borchardt D., 2015. Water resources and their management in Central Asia in the early twenty first century: Status, challenges and future prospects. Environmental Earth Sciences. 73(2), 487-499.
doi: 10.1007/s12665-014-3789-1 |
| [22] | Li L.F., Chen J.J., 2018. Cross border water resources in Central Asia: Development dilemma and governance challenges. Journal of International Politics Studies. 39(3), 89-107 (in Chinese). |
| [23] | Liu Q.Y., 2010. Tajikistan. Beijing: Social Sciences Academic Press, 1-5 (in Chinese). |
| [24] |
Lutz A.F., Immerzeel W.W., Shrestha A.B., et al., 2014. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nature Climate Change. 4(7), 587-592.
doi: 10.1038/nclimate2237 |
| [25] | Massari C., Avanzi F., Bruno G., et al., 2021. Evapotranspiration enhancement drives the European water-budget deficit during multi-year droughts. Hydrology and Earth System Sciences Discussions. 26(6), 1-24. |
| [26] | Micklin P., 2016. The future Aral Sea: Hope and despair. Environmental Earth Sciences. 75(9), 844, doi: 10.1007/s12665-016-5614-5. |
| [27] |
Niederer P., Bilenko V., Ershova N., et al., 2008. Tracing glacier wastage in the Northern Tien Shan (Kyrgyzstan/Central Asia) over the last 40 years. Climatic Change. 86(1-2), 227-234.
doi: 10.1007/s10584-007-9288-6 |
| [28] | Peng K., Zhang Y.Y., Tang Q.H., et al., 2025. Decomposing the effects of changes in catchment characteristics on runoff into chain transmission effects of climate change and human activities using an improved Budyko framework. Earth’s Future. 13, e2025EF006041, doi: 10.1029/2025EF006041. |
| [29] |
Pepin N., Bradley R.S., Diaz H.F., et al., 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change. 5(5), 424-430.
doi: 10.1038/nclimate2563 |
| [30] | Ren X., Zheng J.H., Mu C., et al., 2017. Correlation analysis of the spatial-temporal variation of grassland net primary productivity and climate factors in Xinjiang in the past 15 years. Ecological Science. 36(3), 43-51 (in Chinese). |
| [31] |
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association. 63, 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
| [32] | Shi G.S., Gao B., 2022. Attribution analysis of runoff change in the upper reaches of the Kaidu River basin based on a modified Budyko framework. Atmosphere. 13(9), 1385, doi: 10.3390/atmos13091385. |
| [33] |
Siegfried T., Bernauer T., Guiennet R., et al., 2012. Will climate change exacerbate water stress in Central Asia? Climatic Change. 112(3/4), 881-899.
doi: 10.1007/s10584-011-0253-z |
| [34] |
Sorg A., Bolch T., Stoffel M., et al., 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change. 2(10), 725-731.
doi: 10.1038/nclimate1592 |
| [35] |
Sun H., Yao T.D., Su F.G., et al., 2024. Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau. Hydrology and Earth System Sciences. 28(18), 4361-4381.
doi: 10.5194/hess-28-4361-2024 |
| [36] | Wei W., Wang B.T., Zhang K.B., 2020. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901-2015 based on SPEI. Journal of Beijing Forestry University. 42(4), 113-121 (in Chinese). |
| [37] |
White C.J., Tanton T.W., Rycroft D.W., 2014. The impact of climate change on the water resources of the Amu Darya basin in Central Asia. Water Resources Management. 28(15), 5267-5281.
doi: 10.1007/s11269-014-0716-x |
| [38] | Xia H.H., Yang L.S., Feng Q., et al., 2025. Progress of research on the impact of climate change on hydrological processes in cold regions in alpine mountains of western China. Journal of Salt Lake Research. 33(4), 12-25 (in Chinese). |
| [39] | Zhu L., Deng Y., Bai G.G., et al., 2024. Runoff characteristics and their response to meteorological condition in the Yarlung Zangbo River Basin: Spatial heterogeneity due to the glacier coverage difference. Remote Sensing. 16(24), 4646, doi: 10.3390/rs16244646. |
| [40] |
Zhu S.T., Tang J.Y., Zhou X.L., et al., 2023. Spatiotemporal analysis of the impact of urban landscape forms on PM2.5 in China from 2001 to 2020. International Journal of Digital Earth. 16(1), 3417-3434.
doi: 10.1080/17538947.2023.2249862 |
| [1] | CHEN Yaning, FANG Gonghuan, LI Zhi, ZHANG Xueqi, LI Weihong, Nekruz GULAHMADOV, Farhod NASRULLOEV, Aminjon GULAKHMADOV. Water resources and sustainable management in Tajikistan under global change [J]. Regional Sustainability, 2026, 7(1): 100291-. |
| [2] | Kobiljon Khushvakht KHUSHVAKHTZODA, Ilkhom Burkhonovich MAKHSUMOV, Muzaffar Boynazarovich KHOLNAZAROV, Irina Mikhailovna KIRPICHNIKOVA. Impact of green energy development on climate change mitigation [J]. Regional Sustainability, 2026, 7(1): 100292-. |
| [3] | Hikmat HISORIEV, LI Yaoming, HUANG Wenjun, FAN Lianlian, Mekhrovar OKHONNIYOZOV, MA Xuexi. Grassland ecosystems of Tajikistan: Plant species diversity, ecological restoration, and sustainable management [J]. Regional Sustainability, 2026, 7(1): 100293-. |
| [4] | ZHOU Yixin, MA Suliya, LI Wenjun, Parvina KURBONOVA, Mariyo BOBOEV, LI Yufan, Hikmat HISORIEV, MA Keping, YANG Weikang, ZHANG Yuanming. Vascular plant diversity and distribution pattern in Tajikistan: A global hotspot of diversity [J]. Regional Sustainability, 2026, 7(1): 100294-. |
| [5] | Ranna HAZIHAN, DU Hongru, HE Chuanchuan, Kobiljon Khushvakht KHUSHVAKHTZODA, Bobozoda KOMIL. Coupling dynamics of SDGs in Tajikistan from 2001 to 2023 [J]. Regional Sustainability, 2026, 7(1): 100295-. |
| [6] | XU Chunhai, LI Zhongqin, HE Zhonghua, WANG Feiteng, MU Jianxin, CHEN Yaning, Sheralizoda NAZRIALO, Farhod NASRULLOEV, Aminjon GULAHMADZODA. Current status and recent changes of glaciers in Tajikistan [J]. Regional Sustainability, 2026, 7(1): 100296-. |
| [7] | LI Yupeng, CHEN Yaning, WANG Fei, ZHANG Xiang, ZHANG Qifei, SUN Fan, FANG Gonghuan, Safarkhon SHAROFIDDINOV, Jafar NIYAZOV. Risks of snow drought and impacts on streamflow in Tajikistan [J]. Regional Sustainability, 2026, 7(1): 100298-. |
| [8] | Nasrulloev FARHOD, CHEN Yaning, Sheralizoda NAZRIALO, Gulahmadov NEKRUZ, Shobairi SEYED OMID REZA, Murodov MURODKHUJA. Hydrological change trends of the Surkhob and Khingov river basins in the Vakhsh River of Tajikistan under climate change [J]. Regional Sustainability, 2026, 7(1): 100300-. |
| [9] | Mahalingam Santhosh KUMAR, Narasimabhrathi Venkatesa PALANICHAMY, K. M. SHIVAKUMAR, Mani CHANDRAKUMAR, Muthuswamy KALPANA, Dhandapani MURUGANANTHI. Impact of climate change on global economy: A comprehensive review [J]. Regional Sustainability, 2025, 6(6): 100274-. |
| [10] | Yadeta BEDASA, Adeba GEMECHU, Amsalu BEDEMO. Combined adoption decisions of climate-smart agriculture and their impacts on maize yield in western Ethiopia [J]. Regional Sustainability, 2025, 6(6): 100280-. |
| [11] | Md Tauhid Ur RAHMAN, Adnan KHAIRULLAH. Integrating farmers’ perceptions and empirical climate data to assess agricultural productivity and food security in coastal Bangladesh [J]. Regional Sustainability, 2025, 6(5): 100259-. |
| [12] | Piyali KUMAR. Examining the effects of climatic and non-climatic factors on sectoral growth: Evidence from different country income groups [J]. Regional Sustainability, 2025, 6(5): 100261-. |
| [13] | Saira SHAFIQ, Muhammad ZIA UL HAQ, Syed Abbas RAZA NAQVI, Wardha SARFARAZ, Hina ALI, Muhammad Majid ISLAM, Gul Zaib HASSAN, Muhammad NAWAZ, Tasawer ABBAS. Integrating neglected and underutilized crops (NUCs) in South Asian cropping systems and diets: Challenges and prospects [J]. Regional Sustainability, 2025, 6(4): 100242-. |
| [14] | Md Maruf BILLAH, Mohammad Mahmudur RAHMAN, Santiago MAHIMAIRAJA, Alvin LAL, Asadi SRINIVASULU, Ravi NAIDU. Enhancing climate-smart coastal farming system through agriculture extension and advisory services towards the avenues of farm sustainability [J]. Regional Sustainability, 2025, 6(4): 100243-. |
| [15] | Syed Masiur RAHMAN, Asif RAIHAN, Md Shafiul ALAM, Shakhawat CHOWDHURY. Greenhouse gas emission dynamics and climate change mitigation efforts toward sustainability in the Middle East and North Africa (MENA) region [J]. Regional Sustainability, 2025, 6(4): 100246-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
REGSUS Wechat
新公网安备 65010402001202号