Regional Sustainability ›› 2023, Vol. 4 ›› Issue (2): 139-149.doi: 10.1016/j.regsus.2023.04.002cstr: 32279.14.j.regsus.2023.04.002
Previous Articles Next Articles
Enoch YELELIERE*(), Philip ANTWI-AGYEI, Frank BAFFOUR-ATA
Received:
2022-11-15
Revised:
2023-03-12
Accepted:
2023-04-27
Published:
2023-05-06
Online:
2023-06-16
Contact:
Enoch YELELIERE
E-mail:enochyeleliere.ye@gmail.com
Enoch YELELIERE, Philip ANTWI-AGYEI, Frank BAFFOUR-ATA. Impacts of climate change on the yields of leguminous crops in the Guinea Savanna agroecological zone of Ghana[J]. Regional Sustainability, 2023, 4(2): 139-149.
Table 1
Output of Multiple Regression Analysis (MRA) on the impacts of climate variables on the yields of leguminous crops."
Leguminous crops (dependent variable) | Climate variable (explanatory variable) | Correlation coefficient (r) | P-value | |
---|---|---|---|---|
Groundnuts | Annual rainfall | 0.0009 | 0.270 | |
Annual mean temperature | 0.5370 | 0.100 | ||
Rainfall onset | -0.0036 | 0.710 | ||
Rainfall cessation | 0.0210 | 0.050** | ||
Length of rainy days | 0.0211 | 0.060 | ||
Number of dry days | -0.0090 | 0.320 | ||
Multiple R | 0.700 | |||
R2 | 0.490 | |||
P-value (overall) | 0.105 | |||
Cowpeas | Annual rainfall | 0.0008 | 0.200 | |
Annual mean temperature | 0.5420 | 0.040** | ||
Rainfall onset | -0.0034 | 0.640 | ||
Rainfall cessation | 0.0120 | 0.140 | ||
Length of rainy days | 0.0087 | 0.150 | ||
Number of dry days | -0.0110 | 0.120 | ||
Multiple R | 0.740 | |||
R2 | 0.550 | |||
P-value (overall) | 0.074 | |||
Soybeans | Annual rainfall | 0.0008 | 0.200 | |
Annual mean temperature | 0.6690 | 0.010** | ||
Rainfall onset | -0.0027 | 0.690 | ||
Rainfall cessation | 0.0124 | 0.110 | ||
Length of rainy days | 0.0124 | 0.110 | ||
Number of dry days | -0.0160 | 0.030** | ||
Multiple R | 0.830 | |||
R2 | 0.690 | |||
P-value (overall) | 0.034 |
[1] |
Abdisa T.B., Diga G.M., Tolessa A.R., 2022. Impact of climate variability on rain-fed maize and sorghum yield among smallholder farmers. Cogent Food Agr. 8(1), 2057656, doi: 10.1080/23311932.2022.2057656.
doi: 10.1080/23311932.2022.2057656 |
[2] | Agba D.Z., Adewara S.O., Adama I.J., et al., 2017. Analysis of the effects of climate change on crop output in Nigeria. Am. J. Clim. 554-571. |
[3] | Alidu M.S., 2019. Evaluation of planting dates on growth and yield of three cowpea [Vigna unguiculata (L) Walp.] genotypes in Northern Ghana. Advances in Research. 18(4), 1-14. |
[4] | Amikuzino J., Donkoh S.A., 2012. Climate variability and yields of major staple food crops in northern Ghana. Afr. Crop Sci. J. 20, 349-360. |
[5] | Antwi-Agyei P., Dougill A.J., Stringer L.C., 2018. Adaptation opportunities and maladaptive outcomes in climate vulnerability hotspots of northern Ghana. Clim. Risk Manag. 19, 83-93. |
[6] |
Asodina F.A., Adams F., Nimoh F., et al., 2021. Performance of smallholder soybean farmers in Ghana; evidence from upper west region of Ghana. J. Agric. Res. 4, 100120, doi: 10.1016/j.jafr.2021.100120.
doi: 10.1016/j.jafr.2021.100120 |
[7] |
Atiah W.A., Muthoni F.K., Kotu B., et al., 2021. Trends of rainfall onset, cessation, and length of growing season in Northern Ghana: Comparing the rain gauge, satellite, and farmer’s perceptions. Atmosphere. 12(12), 1674, doi: 10.3390/atmos12121674.
doi: 10.3390/atmos12121674 |
[8] | Ayumah R., 2017. Climate variability and food crop production in the Bawku Municipality. PhD Dissertation. Kumasi: Kwame Nkrumah University of Science and Technology (KNUST). |
[9] |
Baffour-Ata F., Antwi-Agyei P., Nkiaka E., et al., 2021. Effect of climate variability on yields of selected staple food crops in northern Ghana. J. Agric. Food Res. 6, 100205, doi: 10.1016/j.jafr.2021.100205.
doi: 10.1016/j.jafr.2021.100205 |
[10] |
Bhatnagar-Mathur P., Sunkara S., Bhatnagar-Panwar M., et al., 2015. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 234, 119-132.
doi: 10.1016/j.plantsci.2015.02.009 pmid: 25804815 |
[11] | Bring J., 1994. How to standardize regression coefficients. Am. Stat. 48(3), 209-213. |
[12] |
Carvalho M., Lino-Neto T., Rosa E., et al., 2017. Cowpea: A legume crop for a challenging environment. J. Sci. Food Agric. 97(13), 4273-4284.
doi: 10.1002/jsfa.2017.97.issue-13 |
[13] | Dessler A.E., Parson E.A., 2019. The Science and Politics of Global Climate Change:A Guide to the Debate. Cambridge: Cambridge University Press, 278. |
[14] |
Dutta A., Trivedi A., Nath C.P., et al., 2022. A comprehensive review on grain legumes as climate-smart crops: Challenges and prospects. Environmental Challenges. 7, 100479, doi: 10.1016/j.envc.2022.100479.
doi: 10.1016/j.envc.2022.100479 |
[15] | EPA Environmental Protection Agency, 2020. Ghana’s Fourth National Communication to the United Nations Framework Convention on Climate Change. Government of Ghana. [2022-05-05]. https://unfccc.int/sites/default/files/resource/Gh_NC4.pdf. |
[16] | FAO (Food and Agriculture Organisation), 2018. Briefing Note on FAO Actions on Fall Armyworm in Africa. [2022-05-05]. https://www.fao.org/3/bs183e/bs183e.pdf. |
[17] |
Getachew B., Teshome M., 2018. Markov chain modelling of daily rainfall in lay gaint woreda, south Gonder zone, Ethiopia. Journal of Degraded and Mining Lands Management. 5(2), 1141-1152.
doi: 10.15243/jdmlm |
[18] |
Gowik U., Bräutigam A., Weber K.L., et al., 2011. Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? The Plant Cell. 23(6), 2087-2105.
doi: 10.1105/tpc.111.086264 pmid: 21705644 |
[19] |
Guntukula R., 2020. Assessing the impact of climate change on Indian agriculture: Evidence from major crop yields. J. Public Aff. 20(1), e2040, doi: 10.1002/pa.2040.
doi: 10.1002/pa.2040 |
[20] |
Hamed K.H., Rao A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204(1-4), 182-196.
doi: 10.1016/S0022-1694(97)00125-X |
[21] | Hatfield J.L., Prueger J.H., 2015. Temperature extremes: Effect on plant growth and development. Weather. Clim. Exremes. 10, 4-10. |
[22] | IPCC Intergovernmental Panel on Climate Change, 2018. Special Report on Global Warming of 1.5°C (SR1.5). [2023-03-11]. https://www.ipcc.ch/sr15/. |
[23] | IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. [2023-03-11]. https://www.ipcc.ch/report/ar6/wg2/. |
[24] |
Kabo-Bah A.T., Diji C., Nokoe K., et al., 2016. Multiyear rainfall and temperature trends in the Volta River basin and their potential impact on hydropower generation in Ghana. Climate. 4(4), 49, doi: 10.3390/cli4040049.
doi: 10.3390/cli4040049 |
[25] | Kassam A., Kueneman E., Lott R., et al., 2019. The cereal-root crop mixed farming system:A potential breadbasket transitioning to sustainable intensification. In: DixonJ., GarrityD.P., Jean-MarcB., (eds.). Farming Systems and Food Security in Africa. London: Routledge, 214-247. |
[26] | Klutse N.A.B., Owusu K., Adukpo D.C., et al., 2013. Farmer’s Observation on Climate Change Impacts on Maize (Zea mays) Production in a Selected Agro-Ecological Zone in Ghana. [2023-03-11]. http://hdl.handle.net/123456789/6184. |
[27] |
Klutse N.A.B., Owusu K., Nkrumah F., et al., 2021. Projected rainfall changes and their implications for rainfed agriculture in northern Ghana. Weather. 76(10), 340-347.
doi: 10.1002/wea.v76.10 |
[28] | Konlan S., Sarkodie-Addo J., Asare E., et al., 2013. Groundnut (Arachis hypogaea L.) varietal response to spacing in the humid forest zone of Ghana. ARPN: J. Agric. Biol. Sci. 8, 642-651. |
[29] |
Li Y., Guan K., Schnitkey G.D., 2019. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25(7), 2325-2337.
doi: 10.1111/gcb.2019.25.issue-7 |
[30] | MESTI (Ministry of Environment Science, Technology, and Innovation), 2015. Ghana’s Third National Communication Report to the UNFCCC. [2022-05-04]. https://unfccc.int/resource/docs/natc/ghanc3.pdf. |
[31] | MoFA Ministry of Food and Agriculture, 2016. Agriculture in the Upper West Region of Ghana: Facts and Figures, in Accra. [2022-05-05]. https://mofa.gov.gh/site/directorates/regional-directorates/upper-west-region. |
[32] | MoFA, 2018. Agriculture in Ghana: Facts and Figures, in Accra. [2022-04-28]. https://www.mofa.gov.gh/site/images/pdf/AGRIC%20IN%20GHANA%20F&F_2018.pdf. |
[33] | MoFEP Ministry of Finance and Economic Planning, 2020. Composite Budget for 2020-2023 Programme Based Budget Estimates for 2020. [2023-03-23]. https://mofep.gov.gh/sites/default/files/composite-budget/2020/UW/Wa-East.pdf. |
[34] | NOAA National Oceanic and Atmospheric Administration, 2021. Climate at a Glance: Global Time Series. [2022-05-05]. https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series. |
[35] |
Owusu-Adjei E., Baah-Mintah R., Salifu B., 2017. Analysis of the groundnut value chain in Ghana. World Journal of Agricultural Research. 5(3), 177-188.
doi: 10.12691/wjar-5-3-8 |
[36] |
Paulhus J.L., Kohler M.A., 1952. Interpolation of missing precipitation records. Mon. Weather. Rev. 80(8), 129-133.
doi: 10.1175/1520-0493(1952)080<0129:IOMPR>2.0.CO;2 |
[37] | Prasad P.V., Kakani V.G., Upadhyaya H.D., 2010. Growth and production of groundnut. UNESCO Encycl. 1-26. |
[38] |
Rajanna G.A., Dass A., Suman A., et al., 2022. Co-implementation of tillage, irrigation, and fertilizers in soybean: Impact on crop productivity, soil moisture, and soil microbial dynamics. Field. Crops. Res. 288, 108672, doi: 10.1016/j.fcr.2022.108672.
doi: 10.1016/j.fcr.2022.108672 |
[39] |
Sarker M.A.R., Alam K., Gow J., 2012. Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agric. Syst. 112, 11-16.
doi: 10.1016/j.agsy.2012.06.004 |
[40] |
Scheiterle L., Häring V., Birner R., et al., 2019. Soil, Striga, or subsidies? Determinants of maize productivity in northern Ghana. Agric. Econ. 50(4), 479-494.
doi: 10.1111/agec.2019.50.issue-4 |
[41] | Serdeczny O., Waters E., Chan S., 2016. Non-Economic Loss and Damage in the Context of Climate Change: Understanding the Challenges. [2022-04-08]. http://hdl.handle.net/10419/199466. |
[42] |
Souleymane S., Sorho F., Sibirina. S., et al., 2020. Effect of cultural precedents of leguminous (groundnuts, cowpeas and soybeans) on maize production (Zea mays L. Poaceae) in Ferkessedougou North of Côte d’Ivoire. Singapore Journal of Scientific Research. 10(2), 197-206.
doi: 10.3923/sjsres.2020.197.206 |
[43] |
Thierfelder C., Rusinamhodzi L., Setimela P., et al., 2016. Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food. Syst. 31(5), 414-428.
doi: 10.1017/S1742170515000332 |
[44] |
Traore B., Corbeels M., van Wijk M.T., et al., 2013. Effects of climate variability and climate change on crop production in southern Mali. Eur. J. Agron. 49, 115-125.
doi: 10.1016/j.eja.2013.04.004 |
[45] | Tunde A.M., Usman B.A., Olawepo V.O., 2011. Effects of climatic variables on crop production in Patigi LGA, Kwara State, Nigeria. J. Geogr. Reg. Plan. 4(14), 708-714. |
[46] |
Waliyar F., Osiru M., Ntare B.R., et al., 2015. Post-harvest management of aflatoxin contamination in groundnut. World Mycotoxin J. 8(2), 245-252.
doi: 10.3920/WMJ2014.1766 |
[47] | WMO World Meteorological Organisation, 2021. Global Temperature Anomalies Warmest Years in History. [2022-03-11]. https://public.wmo.int/en/media/press-release/2020-was-one-of-three-warmest-years-record. |
[48] |
Wossen T., Berger T., 2015. Climate variability, food security and poverty: Agent-based assessment of policy options for farm households in Northern Ghana. Environ. Sci. Policy. 47, 95-107.
doi: 10.1016/j.envsci.2014.11.009 |
[49] | Yeleliere E., Nyamekye A.B., Antwi-Agyei P., et al., 2022a. Strengthening climate adaptation in the northern region of Ghana: insights from a stakeholder analysis. Clim. Policy. 1-17. |
[50] |
Yeleliere E., Yeboah T., Antwi-Agyei P., et al., 2022b. Traditional agroecological knowledge and practices: The drivers and opportunities for adaptation actions in the northern region of Ghana. Regional Sustainability. 3(4), 294-308.
doi: 10.1016/j.regsus.2022.11.002 |
[51] | Yeleliere E., Antwi-Agyei P., Nyamekye A.B., 2023. Mainstreaming indigenous knowledge systems and practices in climate-sensitive policies for resilient agricultural systems in Ghana. Soc. Nat. Resour. 1-21. |
[52] |
Zhou Y., Zhang J.Y., Hu S.Y., 2021. Regression analysis and driving force model building of CO2 emissions in China. Sci. Rep. 11(1), 1-14.
doi: 10.1038/s41598-020-79139-8 |
[1] | Issa NYASHILU, Robert KIUNSI, Alphonce KYESSI. Climate change vulnerability assessment in the new urban planning process in Tanzania [J]. Regional Sustainability, 2024, 5(3): 100155-. |
[2] | Homayoon RAOUFI, Hamidreza JAFARI, Wakil Ahmad SARHADI, Esmail SALEHI. Assessing the impact of climate change on agricultural production in central Afghanistan [J]. Regional Sustainability, 2024, 5(3): 100156-. |
[3] | Frank BAFFOUR-ATA, Louisa BOAKYE, Moses Tilatob GADO, Ellen BOAKYE-YIADOM, Sylvia Cecilia MENSAH, Senyo Michael KWAKU KUMFO, Kofi Prempeh OSEI OWUSU, Emmanuel CARR, Emmanuel DZIKUNU, Patrick DAVIES. Climatic and non-climatic factors driving the livelihood vulnerability of smallholder farmers in Ahafo Ano North District, Ghana [J]. Regional Sustainability, 2024, 5(3): 100157-. |
[4] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
[5] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[6] | Suchitra PANDEY, Geetilaxmi MOHAPATRA, Rahul ARORA. Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India [J]. Regional Sustainability, 2024, 5(2): 100143-. |
[7] | Ramya Kundayi RAVI, Priya BABY, Nidhin ELIAS, Jisa George THOMAS, Kathyayani Bidadi VEERABHADRAIAH, Bharat PAREEK. Preparedness, knowledge, and perception of nursing students about climate change and its impact on human health in India [J]. Regional Sustainability, 2024, 5(1): 100116-. |
[8] | Ashma SUBEDI, Nani RAUT, Smriti GURUNG. How Himalayan communities are changing cultivation practices in the context of climate change [J]. Regional Sustainability, 2023, 4(4): 378-389. |
[9] | Liton Chandra VOUMIK, Md. Hasanur RAHMAN, Md. Maznur RAHMAN, Mohammad RIDWAN, Salma AKTER, Asif RAIHAN. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[10] | Rula AWAD, Hosam TITI, Aziza MOHAMED-BRAHMI, Mohamed JAOUAD, Aziza GASMI-BOUBAKER. Small ruminant value chain in Al-Ruwaished District, Jordan [J]. Regional Sustainability, 2023, 4(4): 416-424. |
[11] | WU Fan, LIANG Youjia, LIU Lijun, YIN Zhangcai, HUANG Jiejun. Identifying eco-functional zones on the Chinese Loess Plateau using ecosystem service bundles [J]. Regional Sustainability, 2023, 4(4): 425-440. |
[12] | Arifah , Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Knowledge flow analysis of knowledge co-production-based climate change adaptation for lowland rice farmers in Bulukumba Regency, Indonesia [J]. Regional Sustainability, 2023, 4(2): 194-202. |
[13] | Tobias ACKERL, Lemlem Fitwi WELDEMARIAM, Mary NYASIMI, Ayansina AYANLADE. Climate change risk, resilience, and adaptation among rural farmers in East Africa: A literature review [J]. Regional Sustainability, 2023, 4(2): 185-193. |
[14] | Girma TILAHUN, Amare BANTIDER, Desalegn YAYEH. Synergies and trade-offs of climate-smart agriculture (CSA) practices selected by smallholder farmers in Geshy watershed, Southwest Ethiopia [J]. Regional Sustainability, 2023, 4(2): 129-138. |
[15] | Isaac Ayo OLUWATIMILEHIN, Joseph Omojesu AKERELE, Tolulope Adedoyin OLADEJI, Mojisola Hannah OMOGBEHIN, Godwin ATAI. Assessment of the impact of climate change on the occurrences of malaria, pneumonia, meningitis, and cholera in Lokoja City, Nigeria [J]. Regional Sustainability, 2022, 3(4): 309-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||