Regional Sustainability ›› 2024, Vol. 5 ›› Issue (2): 100143.doi: 10.1016/j.regsus.2024.100143
• Full Length Article • Previous Articles Next Articles
Suchitra PANDEY*(), Geetilaxmi MOHAPATRA, Rahul ARORA
Received:
2023-05-21
Revised:
2023-11-30
Accepted:
2024-05-31
Online:
2024-06-30
Published:
2024-07-25
Contact:
Suchitra PANDEY
E-mail:twinklepandey.pandeys@gmail.com
Suchitra PANDEY, Geetilaxmi MOHAPATRA, Rahul ARORA. Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India[J]. Regional Sustainability, 2024, 5(2): 100143.
Table 1
Correlation analysis of DGWL with climatic and anthropogenic variables."
District | Variable | Precipitation | Maximum temperature | Minimum temperature | DGWL | NIA | GDP | Population |
---|---|---|---|---|---|---|---|---|
Ajmer | Precipitation | 1.00 | ||||||
Maximum temperature | -0.47* | 1.00 | ||||||
Minimum temperature | -0.15 | 0.62* | 1.00 | |||||
DGWL | -0.74* | 0.55* | 0.16 | 1.00 | ||||
NIA | -0.75* | 0.50* | 0.18 | 0.90* | 1.00 | |||
GDP | -0.51* | 0.25 | -0.23 | 0.84* | 0.70* | 1.00 | ||
Population | -0.53* | 0.29 | -0.26 | 0.11 | 0.64* | 0.98* | 1.00 | |
Barmer | Precipitation | 1.00 | ||||||
Maximum temperature | -0.36 | 1.00 | ||||||
Minimum temperature | -0.01 | 0.44* | 1.00 | |||||
DGWL | -0.60* | 0.33 | -0.11 | 1.00 | ||||
NIA | 0.04 | -0.21 | -0.64* | -0.26 | 1.00 | |||
GDP | -0.14 | 0.02 | -0.52* | -0.40 | 0.86* | 1.00 | ||
Population | -0.21 | 0.14 | -0.60* | -0.01 | 0.95* | 0.86* | 1.00 | |
Dausa | Precipitation | 1.00 | ||||||
Maximum temperature | -0.42* | 1.00 | ||||||
Minimum temperature | -0.31 | 0.69* | 1.00 | |||||
DGWL | -0.17 | 0.13 | 0.22 | 1.00 | ||||
NIA | -0.04 | -0.05 | -0.27 | 0.42* | 1.00 | |||
GDP | -0.18 | 0.25 | 0.14 | 0.97* | 0.13 | 1.00 | ||
Population | -0.23 | 0.22 | 0.06 | 0.76* | 0.27 | 0.97* | 1.00 | |
Jaipur | Precipitation | 1.00 | ||||||
Maximum temperature | -0.56* | 1.00 | ||||||
Minimum temperature | -0.40* | 0.71* | 1.00 | |||||
DGWL | -0.23 | 0.29 | 0.30 | 1.00 | ||||
NIA | -0.25 | 0.41* | 0.44* | -0.76* | 1.00 | |||
GDP | -0.43* | 0.20 | 0.01 | 0.91* | -0.47* | 1.00 | ||
Population | -0.47* | 0.22 | 0.01 | 0.89* | -0.54* | 0.98* | 1.00 | |
Jodhpur | Precipitation | 1.00 | ||||||
Maximum temperature | -0.50* | 1.00 | ||||||
Minimum temperature | -0.01 | 0.47* | 1.00 | |||||
DGWL | -0.31 | -0.02 | -0.33 | 1.00 | ||||
NIA | -0.35 | -0.09 | -0.59* | -0.51* | 1.00 | |||
GDP | -0.44* | -0.08 | -0.59* | -0.64* | 0.99* | 1.00 | ||
Population | -0.61* | 0.24 | -0.53* | -0.36 | 0.96* | 0.98* | 1.00 | |
Tonk | Precipitation | 1.00 | ||||||
Maximum temperature | -0.36 | 1.00 | ||||||
Minimum temperature | -0.17 | 0.72* | 1.00 | |||||
DGWL | -0.66* | 0.32 | 0.10 | 1.00 | ||||
NIA | -0.70* | 0.12 | 0.02 | -0.73* | 1.00 | |||
GDP | -0.56* | 0.27 | 0.10 | -0.74* | 0.87* | 1.00 | ||
Population | -0.47* | 0.19 | 0.02 | -0.16 | 0.82* | 0.95* | 1.00 |
Table 2
Results of the univariate generalized additive models (GAMs)."
District | Dependent variable | Independent variable | Degree of freedom | P-value | Adjusted coefficient of determination | AIC | DE (%) |
---|---|---|---|---|---|---|---|
Ajmer | DGWL | Precipitation | 1.00 | 0.00*** | 0.53 | -15.47 | 54.70 |
Maximum temperature | 3.48 | 0.02* | 0.32 | -3.52 | 41.30 | ||
NIA | 5.05 | 0.00*** | 0.85 | -41.20 | 88.70 | ||
GDP | 1.00 | 0.00*** | 0.68 | -19.08 | 70.30 | ||
Barmer | DGWL | Precipitation | 1.00 | 0.00*** | 0.33 | -1.87 | 36.20 |
Dausa | DGWL | NIA | 1.00 | 0.03* | 0.14 | 7.60 | 17.70 |
GDP | 1.42 | 0.00*** | 0.94 | -53.13 | 94.90 | ||
Population | 2.76 | 0.00*** | 0.96 | -62.66 | 97.00 | ||
Tonk | DGWL | Precipitation | 1.44 | 0.00*** | 0.44 | -0.78 | 47.00 |
NIA | 1.00 | 0.00*** | 0.51 | -4.74 | 53.70 | ||
GDP | 7.35 | 0.00*** | 0.89 | -29.04 | 93.20 | ||
Jaipur | DGWL | NIA | 4.40 | 0.00*** | 0.69 | -15.70 | 74.70 |
GDP | 4.38 | 0.00*** | 0.93 | -61.70 | 95.10 | ||
Population | 4.98 | 0.00*** | 0.94 | -62.55 | 95.50 | ||
Jodhpur | DGWL | NIA | 8.70 | 0.00*** | 0.94 | -71.74 | 96.60 |
GDP | 7.01 | 0.00*** | 0.82 | -19.50 | 88.30 |
Table 3
Results of the multivariate GAMs."
District | Model | Independent variable | Adjusted coefficient of determination | AIC | DE (%) | Degree of freedom | F-statistic | P-value | VIF) |
---|---|---|---|---|---|---|---|---|---|
Ajmer | Model 1 | Precipitation | 0.56 | -16.69 | 59.80 | 1.00 | 17.47 | 0.00*** | 1.30 |
Temperature | - | - | - | 1.00 | 3.03 | 0.09 | 1.30 | ||
Model 2 | Precipitation | 0.86 | -43.00 | 87.40 | 1.00 | 5.93 | 0.02* | 2.32 | |
NIA | - | - | - | 1.88 | 15.28 | 0.00*** | 2.32 | ||
Model 3 | Precipitation | 0.81 | -28.85 | 83.80 | 1.00 | 14.00 | 0.00*** | 1.36 | |
GDP | - | - | - | 1.75 | 16.31 | 0.00*** | 1.36 | ||
Model 4 | Temperature | 0.83 | -39.98 | 85.90 | 1.00 | 2.62 | 0.12 | 1.34 | |
NIA | - | - | - | 1.96 | 32.20 | 0.00*** | 1.34 | ||
Model 5 | Temperature | 0.78 | -26.76 | 80.90 | 1.00 | 10.51 | 0.00*** | 1.07 | |
GDP | - | - | - | 1.00 | 52.58 | 0.00*** | 1.07 | ||
Model 6 | GDP | 0.94 | -48.61 | 96.00 | 4.21 | 17.70 | 0.00*** | 2.01 | |
NIA | - | - | - | 1.46 | 8.75 | 0.00** | 2.01 | ||
Dausa | Model 1 | NIA | 0.94 | -48.31 | 95.40 | 3.88 | 1.45 | 0.30 | 1.02 |
GDP | - | - | - | 1.00 | 232.26 | 0.00*** | 1.02 | ||
Model 2 | NIA | 0.95 | -55.2 | 96.00 | 1.00 | 3.63 | 0.07 | 1.08 | |
Population | - | - | - | 1.00 | 392.67 | 0.00*** | 1.08 | ||
Tonk | Model 1 | Precipitation | 0.73 | -16.89 | 77.20 | 2.80 | 5.60 | 0.00*** | 1.98 |
NIA | - | - | - | 1.00 | 6.06 | 0.02* | 1.98 | ||
Model 2 | Precipitation | 0.88 | -26.99 | 93.20 | 1.00 | 0.14 | 0.72 | 1.46 | |
GDP | - | - | - | 7.37 | 9.63 | 0.00*** | 1.46 | ||
Model 3 | GDP | 0.96 | -47.90 | 98.30 | 7.05 | 19.92 | 0.00*** | 4.34 | |
NIA | - | - | - | 2.68 | 4.19 | 0.03* | 4.34 | ||
Jaipur | Model 1 | NIA | 0.98 | -80.77 | 99.00 | 3.24 | 12.87 | 0.00*** | 1.30 |
GDP | - | - | - | 4.38 | 65.95 | 0.00*** | 1.30 | ||
Model 2 | NIA | 0.98 | -88.11 | 99.40 | 4.75 | 12.58 | 0.00*** | 1.41 | |
Population | - | - | - | 4.08 | 81.82 | 0.00*** | 1.41 |
Table 4
Results of the optimal multivariate GAMs."
District | Model | Independent variable | Basis checking results | Shapiro-Wilk normality test of GAM residuals | |||
---|---|---|---|---|---|---|---|
Number of basis function | Degree of freedom | k-index | P-value | P-value | |||
Ajmer | Model 6 | GDP | 9 | 1.46 | 1.75 | 1.00 | 0.47 |
NIA | 9 | 4.21 | 1.13 | 0.61 | |||
Dausa | Model 2 | NIA | 9 | 1.00 | 1.04 | 0.45 | 0.32 |
Population | 9 | 1.00 | 1.24 | 0.79 | |||
Tonk | Model 3 | GDP | 9 | 7.05 | 1.13 | 0.61 | 0.28 |
NIA | 9 | 2.68 | 1.66 | 1.00 | |||
Jaipur | Model 2 | NIA | 9 | 4.75 | 1.09 | 0.56 | 0.20 |
Population | 9 | 4.08 | 1.58 | 0.99 |
Fig. 8.
Response curves between GDP and DGWL of Model 6 in Ajmer District (a), NIA and DGWL of Model 6 in Ajmer District (b), NIA and DGWL of Model 2 in Jaipur District (c), population and DGWL of Model 2 in Jaipur District (d), GDP and DGWL of Model 3 in Tonk District (e), and NIA and DGWL of Model 3 in Tonk District (f). The shaded areas indicate the 95% confidence intervals."
[1] |
Aggarwal R., Kaushal M., Kaur S., et al., 2009. Water resource management for sustainable agriculture in Punjab, India. Water Sci. Technol. 60(11), 2905-2911.
doi: 10.2166/wst.2009.348 pmid: 19934512 |
[2] | Andaryani S., Nourani V., Pradhan B., et al., 2022. Spatiotemporal evaluation of future groundwater recharge in arid and semi-arid regions under climate change scenarios. Hydrol. Sci. J. 67(6), doi: 10.1080/02626667.2022.2050732. |
[3] | Arfanuzzaman M., Rahman A.A., 2017. Sustainable water demand management in the face of rapid urbanization and ground water depletion for social-ecological resilience building. Glob. Ecol. Conserv. 10, 9-22. |
[4] | Beckie R.D., 2013. Groundwater. Reference Module in Earth Systems and Environmental Sciences. [2022-12-09]. https://doi.org/10.1016/B978-0-12-409548-9.05923-6. |
[5] | Bera B., Shit P.K., Sengupta N., et al., 2022. Steady declining trend of groundwater table and severe water crisis in unconfined hard rock aquifers in extended part of Chota Nagpur Plateau, India. Appl. Water Sci. 12, 1-19. |
[6] | Burke J.J., Moench M.H., 2000. Groundwater and Society:Resources, Tensions and Opportunities. Themes in Groundwater Management for the Twenty-First Century. New York: Department of International Economic and Social Affairs, Statistical Office. |
[7] | Carrard N., Foster T., Willetts J., 2019. Groundwater as a source of drinking water in Southeast Asia and the Pacific: A multi-country review of current reliance and resource concerns. Water. 11(8), 1605, doi: 10.3390/w11081605. |
[8] | CGWB(Central Ground Water Board), 2009. Dynamic Groundwater Resources of India. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Ground%20Water/Pdf/PublicReports/National%20Report%20. |
[9] | CGWB, 2017. Aquifer Mapping and Groundwater Management-Jodhpur District. [2022-12-09]. http://cgwb.gov.in/cgwbpnm/publication-detail/478. |
[10] | CGWB, 2020a. Aquifer Mapping and Groundwater Management-Barmer District. [2022-12-09]. http://cgwb.gov.in/cgwbpnm/publication-detail/544. |
[11] | CGWB, 2020b. Dynamic Groundwater Resources. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Ground%20Water/Pdf/Reports/assessment_reports/GWRE_FINAL_11.10.21_state.pdf. |
[12] | CGWB, 2021. Dynamic Ground Water Resources, Rajasthan. [2022-12-09]. https://www.cgwb.gov.in/old_website/GW-Assessment/GWR-2022-Reports%20State/Rajasthan.pdf. |
[13] | CGWB, 2022a. Dynamic Groundwater Resources of India. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Public-Health-Engineering-Department/PDF2022/2022-11-10-Final-Report-GWRA2022-Compressed.pdf. |
[14] | CGWB, 2022b. Aquifer Mapping and Groundwater Management-Tonk District. [2022-12-09]. http://cgwb.gov.in/cgwbpnm/publication-detail/562. |
[15] | Chen Z., Grasby S.E., Osadetz K.G., 2004. Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J. Hydrol. 290(1-2), 43-62. |
[16] | Chinnasamy P., Maheshwari B., Prathapar S., 2015. Understanding groundwater storage changes and recharge in Rajasthan, India through remote sensing. Water. 7(10), 5547-5565. |
[17] | Dey S., Bhatt D., Haq S., et al., 2020. Potential impact of rainfall variability on groundwater resources: A case study in Uttar Pradesh, India. Arab. J. Geosci. 13, doi: 10.1007/s12517-020-5083-8. |
[18] | Dhal L., Swain S., 2022. Understanding and modeling the process of seawater intrusion:A review. In: GuptaP.K., YadavB., HimanshuS.K., (eds.). California: Advances in Remediation Techniques for Polluted Soils and Groundwater, 269-290. |
[19] | Dhillon M.S., Kaur S., Aggarwal R., 2019. Delineation of critical regions for mitigation of carbon emissions due to groundwater pumping in central Punjab. Groundwater SustainDev. 8, 302-308. |
[20] | Fahim A.K.F., Kamal A.S.M.M., Shahid S., 2023. Spatiotemporal change in groundwater sustainability of Bangladesh and its major causes. Stoch. Environ. Res. Risk. Assess. 37, 665-680. |
[21] | Feng D., Zheng Y., Mao Y., et al., 2018. An integrated hydrological modeling approach for detection and attribution of climatic and human impacts on coastal water resources. J. Hydrol. 557, 305-320. |
[22] | Li H.H., Lu Y.D., Zheng C., et al., 2020. Seasonal and inter-annual variability of groundwater and their responses to climate change and human activities in arid and desert areas: A case study in Yaoba Oasis, Northwest China. Water. 12(1), 303, doi: 10.3390/w12010303. |
[23] | Leng G.Y., Huang M.Y., Tang Q.H., et al., 2014. Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J. Hydrol. Meteorol. 15(3), 957-972. |
[24] | Gantait A., Das S., Ghosh S., et al., 2022. Hydrogeochemical evolution and quality assessment of groundwater of Ajmer district, Rajasthan, India. J. Earth Syst. Sci. 131, 236, doi: 10.1007/s12040-022-01975-1. |
[25] | Gibrilla A., Anornu G., Adomako D., 2018. Trend analysis and Arima modelling of recent groundwater levels in the White Volta River basin of Ghana. Groundwater Sustain. Dev. 6, 150-163. |
[26] | GOR (Government of Rajasthan), 2013a. Hydrogeological Atlas of Rajasthan-Jaipur District. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Ground%20Water/Pdf/PublicReports/Groundwater_Atlas/Districts/Districtwise%20Atlas%20-%20Jaipur.pdf. |
[27] | GOR, 2013b. Hydrogeological Atlas of Rajasthan-Tonk District. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Ground%20Water/Pdf/PublicReports/Groundwater_Atlas/Districts/Districtwise%20Atlas%20-%20Tonk.pdf. |
[28] | GOR, 2013c. Hydrogeological Atlas of Rajasthan-Dausa District. [2022-12-09]. https://phedwater.rajasthan.gov.in/content/dam/doitassets/water/Ground%20Water/Pdf/PublicReports/Groundwater_Atlas/Districts/Districtwise%20Atlas%20-%20Dausa.pdf. |
[29] | GOR, 2017. District Survey Report. [2022-12-09]. https://environmentclearance.nic.in/DownloadPfdFile.aspx?. |
[30] | GOR, 2021. Groundwater Level Scenario in Rajasthan. [2022-12-09]. https://cgwb.gov.in/cgwbpnm/public/uploads/documents/1688105834980500995file.pdf. |
[31] | GOR, 2022. Sustainable Development Index. [2022-12-09]. https://sdg.rajasthan.gov.in/Upload%20Attachment/fe0c6e45-0300-4124-90ce-eb4b1da7c63e/Rajasthan%20SDG%20Index.pdf. |
[32] | Halder S., Roy M.B., Roy P.K., 2020. Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN Appl. Sci. 2, 1-24. |
[33] | Hamed K.H., Rao R.A., 1998. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrology. 204(1-4), 182-196. |
[34] | Hastie T., Tibshirani R., 1986. Generalized additive models. Stat. Sci. 3, 297-318. |
[35] | Helmechke M., Fries E., Schulte C., 2020. Regulating water reuse for agricultural irrigation: Risks related to organic micro-contaminants. Environ. Sci. Eur. 32, 1-10. |
[36] | Hoogesteger J., 2022. Regulating agricultural groundwater use in arid and semi-arid regions of the global south: Challenges and socio-environmental impacts. Curr. Opin. Environ. Sci. Health. 27, 100341, doi: 10.1016/j.coesh.2022.100341. |
[37] | Hwang S.A., Hwang S.J., Park S.R., et al., 2016. Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models. Water. 8(4), 155, doi: 10.3390/w8040155. |
[38] | Jia X.Y., O’Connor D., Hou D.Y., et al., 2019. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 672, 551-562. |
[39] | Jiménez-Martínez J., Skaggs T.H., van Genuchten M.T., et al., 2009. A root zone modelling approach to estimating groundwater recharge from irrigated areas. J. Hydrol. 367(1-2), 138-149. |
[40] | Jun X., Chen Y.D., 2001. Water problems and opportunities in the hydrological sciences in China. Hydrol. Sci. J. 46(6), 907-921. |
[41] | Kambale J., Singh D.K., Sarangi A., 2017. Impact of climate change on groundwater recharge in a semi-arid region of northern India. Appl. Ecol. Environ. Res. 15, 335-362. |
[42] | Keerthana A., Nair A., 2022. Trend analysis of hydro-climatological factors using a bayesian ensemble algorithm with reasoning from dynamic and static variables. Atmosphere. 13(12), 1961, doi: 10.3390/atmos13121961. |
[43] | Khalaj M., Kholghi M., Saghafian B., et al., 2019. Impact of climate variation and human activities on groundwater quality in northwest of Iran. J. Water Supply Res Technol.-Aqua. 68(2), 121-135. |
[44] | Kong F.H., Xu W.J., Mao R.C., et al., 2022. Dynamic changes in groundwater level under climate changes in the Gnangara region, Western Australia. Water. 14(2), 162, doi: 10.3390/w14020162. |
[45] | Lin X., Liao Y., Hao Y.T., 2018. The burden associated with ambient PM2.5 and meteorological factors in Guangzhou, China, 2012-2016: A generalized additive modeling of temporal years of life lost. Chemosphere. 212, 705-714. |
[46] | Liu J.T., Gao Z.J., Wang M., et al., 2018. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City. Environ. Earth Sci. 77, 1-15. |
[47] | Liu K., Li X.K., Long X., 2021. Trends in groundwater changes driven by precipitation and anthropogenic activities on the southeast side of the Hu Line. Enviro. Res. Lett. 16, 094032, doi: 10.1088/1748-9326/ac1ed8. |
[48] | Masroor M., Rehman S., Sajjad H., et al., 2021. Assessing the impact of drought conditions on groundwater potential in Godavari Middle Sub-Basin, India using analytical hierarchy process and random forest machine learning algorithm. Groundwater Sustain. Dev. 13, 100554, doi: 10.1016/j.gsd.2021.100554. |
[49] | Muenratch P., Nguyen T.P.L., Shrestha S., et al., 2022. Governance and policy responses to anthropogenic and climate pressures on groundwater resources in the Greater Mekong subregion urbanising cities. Groundwater Sustain. Dev. 18, 100791, doi: 10.1016/j.gsd.2022.100791. |
[50] | Narjary B., Kumar S., Kamra S.K., et al., 2014. Impact of precipitation variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana. Curr. Sci. 107, 161-170. |
[51] | Naumann G., Alfieri L., Wyser K., et al., 2018. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 45, 3285-3296. |
[52] | Odeh T., Mohammad A.H., Hussein H., et al., 2019. Over-pumping of groundwater in Irbid governorate, northern Jordan: A conceptual model to analyze the effects of urbanization and agricultural activities on groundwater levels and salinity. Environ. Earth Sci. 78, 40, doi: 10.1007/s12665-018-8031-0. |
[53] | Ouhamdouch S., Bahir M., Ouazar D., et al., 2019. Evaluation of climate change impact on groundwater from semi-arid environment (Essaouira Basin, Morocco) using integrated approaches. Environ. Earth Sci. 78, 449, doi: 10.1007/s12665-019-8470-2. |
[54] | Panda D.K., Mishra A., Kumar A., 2012. Quantification of trends in groundwater levels of Gujarat in western India. Hydrol. Sci. J. 57, 1325-1336. |
[55] | Pathak A.A., Dodamani B.M., 2019. Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha river basin, India. Nat. Resour. Res. 28, 631-643. |
[56] | Phulpagar S.R., Kale G.D., 2021. Prioritization of all blocks in districts of the Jaipur division with investigation of factors affecting significant trends in GWL. Journal of Geological society of India. 97, 1454-1464. |
[57] | Portmann F.T., Döll P., Eisner S., et al., 2013. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP 5 climate projections. Environ. Res. Lett. 8, 024023, doi: 10.1088/1748-9326/8/2/024023. |
[58] | Prajapati R., Upadhyay S., Talchabhadel R., et al., 2021. Investigating the nexus of groundwater levels, precipitation and land-use in the Kathmandu Valley, Nepal. Groundwater Sustain. Dev. 14, 100584, doi: 10.1016/j.gsd.2021.100584. |
[59] | Qiu L., Huang J.Y., Niu W.J., 2018. Decoupling and driving factors of economic growth and groundwater consumption in the coastal areas of the Yellow Sea and the Bohai Sea. Sustainability. 10(11), 4158, doi: 10.3390/su10114158. |
[60] | Roy S.S., Rahman A., Ahmed S., et al., 2022. Long-term trends of groundwater level variations in response to local level land use land cover changes in Mumbai, India. Groundwater Sustain. Dev. 18, 100797, doi: 10.1016/j.gsd.2022.100797. |
[61] | Sahoo S., Swain S., Goswami A., et al., 2021. Assessment of trends and multi-decadal changes in groundwater level in parts of the Malwa region, Punjab, India. Groundwater Sustain. Dev. 14, 100644, doi: 10.1016/j.gsd.2021.100644. |
[62] | Saikia P., Chetry N., 2020. Study of fluctuations in the groundwater level in Rajasthan: A spatio-temporal approach. International Journal of Engineering and Technical Research. 9, 1188-1192. |
[63] | Sajjad M.M., Wang J., Abbas H., et al., 2022. Impact of climate and land-use change on groundwater resources, study of Faisalabad District, Pakistan. Atmosphere. 13, 1097, doi: 10.3390/atmos13071097. |
[64] | Sarkar T., Kannaujiya S., Taloor A.K., et al., 2020. Integrated study of GRACE data derived interannual groundwater storage variability over water stressed Indian regions. Groundwater Sustain. Dev. 10, 100376, doi: 10.1016/j.gsd.2020.100376. |
[65] | Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Statist. Assoc. 63, 1379-1389. |
[66] | Shah T., 2009. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005, doi: 10.1088/1748-9326/4/3/035005. |
[67] | Sharan A., Lal A., Datta B., 2023. Evaluating the impacts of climate change and water over-abstraction on groundwater resources in Pacific Island country of Tonga. Groundwater Sustain. Dev. 20, 100890, doi: 10.1016/j.gsd.2022.100890. |
[68] | Simpson G.L., 2018. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 396134, doi: 10.3389/fevo.2018.00149. |
[69] | Singh A.P., Bhakar P., 2021. Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India. Environ. Dev. Sustain. 23, 1844-1868. |
[70] | Singh E.R.D., Ghosh N.C., Kumar C.P., et al., 2011. Study on Rising Groundwater Table in Jodhpur City, and to Evolve a Management Plan for Containing the Rising Trend. [2022-12-09]. https://www.scribd.com/document/642700025/Jodhpur-final-report-pdf. |
[71] | Singh R.B., Kumar A., 2015. Climate variability and water resource scarcity in drylands of Rajasthan, India. Geoenviron. Disasters. 2, 1-10. |
[72] | Sishodia R.P., Shukla S., Graham W.D., et al., 2016. Bi-decadal groundwater level trends in a semi-arid south Indian region: declines, causes and management. J. Hydrol.-Reg. Stud. 8, 43-58. |
[73] | Stone C.J., 1986. The dimensionality reduction principle for generalized additive models. The Annals of Statistics. 14, 590-606. |
[74] | Swain S., Mishra S.K., Pandey A., 2021. A detailed assessment of meteorological drought characteristics using simplified rainfall index over Narmada River Basin, India. Environ. Earth Sci. 80, 221, doi: 10.1007/s12665-021-09523-8. |
[75] | Swain S., Sahoo S., Taloor A.K., 2022a. Groundwater quality assessment using geospatial and statistical approaches over Faridabad and Gurgaon districts of National Capital Region, India. Appl. Water Sci. 12, 75, doi: 10.1007/s13201-022-01604-8. |
[76] | Swain S., Sahoo S., Taloor A.K., 2022b. Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundwater Sustain. Dev. 18, 100783, doi: 10.1016/j.gsd.2022.100783. |
[77] | Swain S., Mishra S.K., Pandey A., et al., 2022c. Inclusion of groundwater and socio-economic factors for assessing comprehensive drought vulnerability over Narmada River Basin, India: A geospatial approach. Appl. Water Sci. 12, 14, doi: 10.1007/s13201-021-01529-8. |
[78] | Swain S., Mishra S.K., Pandey A., et al., 2022d. Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environ. Monit. Assess. 194, 893, doi: 10.1007/s10661-022-10534-6. |
[79] | Tembhurne S., Kanwar P., Salunke K., et al., 2021. Interrelationship of rainfall and groundwater levels: Impact on socioeconomic conditions in Sawai Madhopur District, Rajasthan (India). Current Directions in Water Scarcity Research. 5, 541-557. |
[80] | Tripathi S.S., Issac R.K., 2016. Precipitation pattern and groundwater fluctuation in Ramganga River Basin at Bareilly District, Uttar Pradesh, India. International Journal of Advanced Engineering, Management and Science. 2(6), 576-587. |
[81] | Tirogo J., Jost A., Biaou A., et al., 2016. Climate variability and groundwater response: A case study in Burkina Faso (West Africa). Water. 8(5), 171, doi: 10.3390/w8050171. |
[82] | Tiwari K., Krishan G., Prasad G., et al., 2020. Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa District, Rajasthan, India. Groundwater Sustain. Dev. 11, 100465, doi: 10.1016/j.gsd.2020.100465. |
[83] | Tran Q.K., Schwabe K.A., Jassby D., 2016. Wastewater reuse for agriculture: Development of a regional water Reuse Decision-Support Model (RWRM) for cost-effective irrigation sources. Environ. Sci. Technol. 50, 9390-9399. |
[84] | UNESCO (United Nations Educational, Scientific and Cultural Organization), 2022. Groundwater: Making the Invisible Visible. [2022-12-09]. https://unesdoc.unesco.org/ark:/48223/pf0000380721. |
[85] | Wang L.J., Zeng X.G., Yu H., 2022. Association between lake sediment nutrients and climate change, anthropogenic activities: A time-series analysis. Environ. Manag. 70(1), 117-133. |
[86] | Yadav B., Gupta P.K., Patidar N., et al., 2020. Ensemble modelling framework for groundwater level prediction in urban areas of India. Sci. Total Environ. 712, 135539, doi: 10.1016/j.scitotenv.2019.135539. |
[87] | Zhao Z., Jia Z., Guan Z., et al., 2019. The effect of climatic and non-climatic factors on groundwater levels in the Jinghuiqu irrigation district of the Shaanxi Province, China. Water. 11(5), 956, doi: 10.3390/w11050956. |
[88] | Zhou S., Huang Y.F., Yu B.F., et al., 2015. Effects of human activities on the eco-environment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecol. Eng. 76, 14-26. |
[89] | Zhuang C., Ouyang Z., Xu W., et al., 2011. Impacts of human activities on the hydrology of Baiyangdian Lake, China. Environ. Earth Sci. 62, 1343-1350. |
[1] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[2] | Ramya Kundayi RAVI, Priya BABY, Nidhin ELIAS, Jisa George THOMAS, Kathyayani Bidadi VEERABHADRAIAH, Bharat PAREEK. Preparedness, knowledge, and perception of nursing students about climate change and its impact on human health in India [J]. Regional Sustainability, 2024, 5(1): 100116-. |
[3] | SUBEDI Ashma, RAUT Nani, GURUNG Smriti. How Himalayan communities are changing cultivation practices in the context of climate change [J]. Regional Sustainability, 2023, 4(4): 378-389. |
[4] | Chandra VOUMIK Liton, Hasanur RAHMAN Md., Maznur RAHMAN Md., RIDWAN Mohammad, AKTER Salma, RAIHAN Asif. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[5] | AWAD Rula, TITI Hosam, MOHAMED-BRAHMI Aziza, JAOUAD Mohamed, GASMI-BOUBAKER Aziza. Small ruminant value chain in Al-Ruwaished District, Jordan [J]. Regional Sustainability, 2023, 4(4): 416-424. |
[6] | Fan WU, Youjia LIANG, Lijun LIU, Zhangcai YIN, Jiejun HUANG. Identifying eco-functional zones on the Chinese Loess Plateau using ecosystem service bundles [J]. Regional Sustainability, 2023, 4(4): 425-440. |
[7] | Tobias ACKERL, Lemlem Fitwi WELDEMARIAM, Mary NYASIMI, Ayansina AYANLADE. Climate change risk, resilience, and adaptation among rural farmers in East Africa: A literature review [J]. Regional Sustainability, 2023, 4(2): 185-193. |
[8] | Enoch YELELIERE, Philip ANTWI-AGYEI, Frank BAFFOUR-ATA. Impacts of climate change on the yields of leguminous crops in the Guinea Savanna agroecological zone of Ghana [J]. Regional Sustainability, 2023, 4(2): 139-149. |
[9] | Girma TILAHUN, Amare BANTIDER, Desalegn YAYEH. Synergies and trade-offs of climate-smart agriculture (CSA) practices selected by smallholder farmers in Geshy watershed, Southwest Ethiopia [J]. Regional Sustainability, 2023, 4(2): 129-138. |
[10] | Arifah, Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Knowledge flow analysis of knowledge co-production-based climate change adaptation for lowland rice farmers in Bulukumba Regency, Indonesia [J]. Regional Sustainability, 2023, 4(2): 194-202. |
[11] | Isaac Ayo OLUWATIMILEHIN, Joseph Omojesu AKERELE, Tolulope Adedoyin OLADEJI, Mojisola Hannah OMOGBEHIN, Godwin ATAI. Assessment of the impact of climate change on the occurrences of malaria, pneumonia, meningitis, and cholera in Lokoja City, Nigeria [J]. Regional Sustainability, 2022, 3(4): 309-318. |
[12] | Enoch YELELIERE, Thomas YEBOAH, Philip ANTWI-AGYEI, Prince PEPRAH. Traditional agroecological knowledge and practices: The drivers and opportunities for adaptation actions in the northern region of Ghana [J]. Regional Sustainability, 2022, 3(4): 294-308. |
[13] | Firoz AHMAD, Nazimur Rahman TALUKDAR, Laxmi GOPARAJU, Chandrashekhar BIRADAR, Shiv Kumar DHYANI, Javed RIZVI. GIS-based assessment of land-agroforestry potentiality of Jharkhand State, India [J]. Regional Sustainability, 2022, 3(3): 254-268. |
[14] | ARIFAH, Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Livelihood vulnerability of smallholder farmers to climate change: A comparative analysis based on irrigation access in South Sulawesi, Indonesia [J]. Regional Sustainability, 2022, 3(3): 244-253. |
[15] | Binod DAWADI, Anjula SHRESTHA, Ram Hari ACHARYA, Yam Prasad DHITAL, Rohini DEVKOTA. Impact of climate change on agricultural production: A case of Rasuwa District, Nepal [J]. Regional Sustainability, 2022, 3(2): 122-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||