Regional Sustainability ›› 2023, Vol. 4 ›› Issue (2): 129-138.doi: 10.1016/j.regsus.2023.04.001
Previous Articles Next Articles
Girma TILAHUNa,b,*(), Amare BANTIDERb, Desalegn YAYEHb
Received:
2022-11-05
Revised:
2023-03-07
Accepted:
2023-04-08
Published:
2023-04-17
Online:
2023-06-16
Contact:
Girma TILAHUN
E-mail:girma2721@gmail.com
Girma TILAHUN, Amare BANTIDER, Desalegn YAYEH. Synergies and trade-offs of climate-smart agriculture (CSA) practices selected by smallholder farmers in Geshy watershed, Southwest Ethiopia[J]. Regional Sustainability, 2023, 4(2): 129-138.
Table 1
Determination of climate-smart agriculture (CSA) practices through household survey."
CSA practices | CSA practices determined through household survey |
---|---|
Crop management practices | Use of efficient inorganic fertilizers |
Changing planting dates | |
Crop rotation with legumes | |
Use of organic fertilizers | |
Field management and climate change mitigation practices | Use of cover crops |
Alley cropping | |
Tree planting for windbreak and shelter for crops | |
Use of mulching | |
Use of briquettes | |
Farm risk reduction practices | Feed improvement |
Use of improved crop varieties | |
Small-scale irrigation | |
Supplementary income generation practices | Improved animal husbandry |
Apiculture | |
Poultry farming | |
Soil and water conservation practices | Use of grass strip |
Terraces |
Table 2
Synergies and trade-offs of CSA practices."
CSA practices | Goal of CSA practices | ||
---|---|---|---|
Productivity | Adaptation | Mitigation | |
Use of improved crop varieties | ++ | ++ | ++ |
Small-scale irrigation | ++ | ++ | ++ |
Improved animal husbandry | ++ | ++ | - |
Use of efficient inorganic fertilizers | ++ | ++ | + |
Crop rotation with legumes | ++ | + | ++ |
[1] |
Ahmed M.H., 2022. Impact of improved seed and inorganic fertilizer on maize yield and welfare: Evidence from Eastern Ethiopia. J. Agric. Food Res. 7, 100266, doi: 10.1016/j.jafr.2021.100266.
doi: 10.1016/j.jafr.2021.100266 |
[2] |
Aktar W., Sengupta D., Chowdhury A., 2009. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology. 2(1), 1-12.
doi: 10.2478/v10102-009-0001-7 pmid: 21217838 |
[3] |
Arora N.K., 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability. 2(2), 95-96.
doi: 10.1007/s42398-019-00078-w |
[4] |
Baiyegunhi L.J.S., Akinbosoye F., Bello L.O., 2022. Welfare impact of improved maize varieties adoption and crop diversification practices among smallholder maize farmers in Ogun State, Nigeria. Heliyon. 8(5), e09338, doi: 10.1016/j.heliyon.2022.e09338.
doi: 10.1016/j.heliyon.2022.e09338 |
[5] |
Baniassadi A., Sailor D.J., 2018. Synergies and trade-offs between energy efficiency and resiliency to extreme heat-A case study. Build. Environ. 132, 263-272.
doi: 10.1016/j.buildenv.2018.01.037 |
[6] |
Bayu T., 2020. Review on the contribution of integrated soil fertility management for climate change mitigation and agricultural sustainability. Cogent Environ. Sci. 6(1), 1823631, doi: 10.1080/23311843.2020.1823631.
doi: 10.1080/23311843.2020.1823631 |
[7] |
Beeby J., Moore S., Taylor L., et al., 2020. Effects of a one-time organic fertilizer application on long-term crop and residue yields, and soil quality measurements using biointensive agriculture. Front. Sustain. Food Syst. 4, 67, doi: 10.3389/fsufs.2020.00067.
doi: 10.3389/fsufs.2020.00067 |
[8] |
Dagnachew M., Moges A., Kebede A., et al., 2020. Effects of soil and water conservation measures on soil quality indicators: The case of geshy subcatchment, Gojeb River Catchment, Ethiopia. Appl. Environ. Soil Sci. doi: 10.1155/2020/1868792.
doi: 10.1155/2020/1868792 |
[9] |
Dara S.K., 2019. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 10(1), 12, doi: 10.1093/jipm/pmz010.
doi: 10.1093/jipm/pmz010 |
[10] |
Datta A., Nayak D., Smith J.U., et al., 2022. Climate-smart agricultural practices improve soil quality through organic carbon enrichment and lower greenhouse gas emissions in farms of the bread bowl of India. Soil Res. 60(6), 455-469.
doi: 10.1071/SR21031 |
[11] |
Diacono M., Montemurro F., 2010. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30(2), 401-422.
doi: 10.1051/agro/2009040 |
[12] |
Diro S., Tesfaye A., Erko B., 2022. Determinants of adoption of climate-smart agricultural technologies and practices in the coffee-based farming system of Ethiopia. Agriculture and Food Security. 11(1), 1-14.
doi: 10.1186/s40066-021-00340-7 |
[13] |
Donatelli M., Magarey R.D., Bregaglio S., et al., 2017. Modeling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213-224.
doi: 10.1016/j.agsy.2017.01.019 |
[14] | FAO Food and Agriculture Organization of the Untited Nations, 2021a. Climate-Smart Agriculture. [2023-03-20]. https://www.fao.org/climate-smart-agriculture/en/. |
[15] | FAO, 2021b. Climate-Smart Agriculture Case Studies 2021. Rome: FAO, 63-64. |
[16] |
Ficiciyan A., Loos J., Sievers-Glotzbach S., et al., 2018. More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability. 10(8), 1-15.
doi: 10.3390/su10020001 |
[17] |
Gezie M., 2019. Farmer’s response to climate change and variability in Ethiopia: A review. Cogent Food Agr. 5(1), 1613770, doi: 10.1080/23311932.2019.1613770.
doi: 10.1080/23311932.2019.1613770 |
[18] | Ghimire R., Khatri-Chhetri A., Chhetri N., 2022. Institutional innovations for climate smart agriculture: Assessment of climate-smart village approach in Nepal. Front. Sustain. Food Syst. 6, 1-13. |
[19] |
Gill M., Smith P., Wilkinson J.M., 2010. Mitigating climate change: The role of domestic livestock. Animal. 4(3), 323-333.
doi: 10.1017/S1751731109004662 pmid: 22443938 |
[20] |
Girardello M., Santangeli A., Mori E., et al., 2019. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9(1), 1-8.
doi: 10.1038/s41598-018-37186-2 |
[21] | Gitz V., Meybeck A., Lipper L., et al., 2016. Climate Change and Food Security: Risks and Responses. [2023-03-20]. http://www.fao.org/3/a-i5188e.pdf. |
[22] | Golla A.S., 2019. Soil acidity and its management options in Ethiopia: A review. International Journal of Scientific Research and Management. 7(11), 27-35. |
[23] |
Habtewold T.M., 2021. Impact of climate-smart agricultural technology on multidimensional poverty in rural Ethiopia. J. Integr. Agric. 20(4), 1021-1041.
doi: 10.1016/S2095-3119(21)63637-7 |
[24] |
Hörner D., Wollni M., 2021. Integrated soil fertility management and household welfare in Ethiopia. Food Policy. 100, 102022, doi: 10.1016/j.foodpol.2020.102022.
doi: 10.1016/j.foodpol.2020.102022 |
[25] |
Hossain M.S., Arshad M., Qian L., et al., 2019. The economic impact of climate change on crop farming in Bangladesh: An application of the Ricardian method. Ecol. Econ. 164, 106354, doi: 10.1016/j.ecolecon.2019.106354.
doi: 10.1016/j.ecolecon.2019.106354 |
[26] |
Hossain M.S., Alam G.M.M., Fahad S., et al., 2022. Smallholder farmers’ willingness to pay for flood insurance as climate change adaptation strategy in northern Bangladesh. J. Clean Prod. 338, 130584, doi: 10.1016/j.jclepro.2022.130584.
doi: 10.1016/j.jclepro.2022.130584 |
[27] |
Howe C., Suich H., Vira B., et al., 2014. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Global Environmental Change. 28(1), 263-275.
doi: 10.1016/j.gloenvcha.2014.07.005 |
[28] |
Hundera H., Mpandeli S., Bantider A., 2019. Smallholder farmers’ awareness and perceptions of climate change in Adama district, central rift valley of Ethiopia. Weather Clim. Extremes. 26, 100230, doi: 10.1016/j.wace.2019.100230.
doi: 10.1016/j.wace.2019.100230 |
[29] |
Jha S., Kaechele H., Lana M., et al., 2020. Exploring farmers’ perceptions of agricultural technologies: A case study from Tanzania. Sustainability. 12(3), 1-21.
doi: 10.3390/su12010001 |
[30] |
Kearney S.P., Fonte S.J., García E., et al., 2019. Evaluating ecosystem service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador. Ecol. Indic. 105, 264-278.
doi: 10.1016/j.ecolind.2017.08.032 |
[31] | Khan M.N., Mobin M., Abbas Z.K., 2017. Fertilizers and their contaminants in soils, surface, and groundwater. Encyclopedia of the Anthropocene. 5, 225-240. |
[32] |
Liu M., Dong X., Wang X., et al., 2022. The trade-offs/synergies and their spatial-temporal characteristics between ecosystem services and human well-being linked to land-use change in the capital region of China. Land. 11(5), 1-22.
doi: 10.3390/land11010001 |
[33] |
Lopez-Ridaura S., Frelat R., van Wijk M.T., et al., 2018. Climate-smart agriculture, farm household typologies, and food security: An ex-ante assessment from Eastern India. Agric. Syst. 159, 57-68.
doi: 10.1016/j.agsy.2017.09.007 |
[34] |
Mahmud K., Panday D., Mergoum A., et al., 2021. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability. 13(4), 1-23.
doi: 10.3390/su13010001 |
[35] |
Malhi G.S., Kaur M., Kaushik P., 2021. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability. 13(3), 1-21.
doi: 10.3390/su13010001 |
[36] |
Mango N., Makate C., Tamene L., et al., 2018. Adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle, Southern Africa. Land. 7(2), 1-19.
doi: 10.3390/land7010001 |
[37] |
Mba C., Ghosh K., Guimaraes E.P., 2012. Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agriculture and Food Security. 1(1), 1-17.
doi: 10.1186/2048-7010-1-1 |
[38] | Mereu V., Santini M., Cervigni R., et al., 2018. Robust decision-making for a climate-resilient development of the agricultural sector in Nigeria. Climate Smart Agriculture: Building Resilience to Climate Change. 227-306. |
[39] |
Mihiretu A., Okoyo E.N., Lemma T., 2021. Causes, indicators, and impacts of climate change: understanding the public discourse in Goat based agro-pastoral livelihood zone, Ethiopia. Heliyon. 7(3), e06529, doi: 10.1016/j.heliyon.2021.e06529.
doi: 10.1016/j.heliyon.2021.e06529 |
[40] |
Mossie W.A., 2022. The impact of climate-smart agriculture technology on productivity: Does row planting matter? Evidence from Southern Ethiopia. Sci. World J. doi: 10.1155/2022/3218287.
doi: 10.1155/2022/3218287 |
[41] |
Ngango J., Seungjee H., 2021. Adoption of small-scale irrigation technologies and its impact on land productivity: Evidence from Rwanda. J. Integr. Agric. 20(8), 2302-2312.
doi: 10.1016/S2095-3119(20)63417-7 |
[42] | NMA National Meteorological Agency, 2022. Climate Information. [2023-03-20]. http://www.ethiomet.gov.et/. |
[43] |
Ochieng J., Kirimi L., Mathenge M., 2016. Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS-Wagen. J. Life Sci. 77, 71-78.
doi: 10.1016/j.njas.2016.03.005 |
[44] |
Ofgeha G.Y., Abshire M.W., 2021. Spatio-temporal variability and trends in rainfall and temperature in Anger watershed, Southwestern Ethiopia. Journal of Applied Geospatial Information. 5(1), 462-472.
doi: 10.30871/jagi.v5i1 |
[45] |
Ogola R.J.O., Ouko K.O., 2021. Synergies and trade-offs of selected climate-smart agriculture practices in Irish potato farming, Kenya. Cogent Food Agr. 7(1), 1948257, doi: 10.1080/23311932.2021.1948257.
doi: 10.1080/23311932.2021.1948257 |
[46] |
Passarelli S., Mekonnen D., Bryan E., 2018. Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania. Food Secur. 10(4), 981-997.
doi: 10.1007/s12571-018-0812-5 |
[47] |
Qureshi M.R.N.M., Almuflih A.S., Sharma J., et al., 2022. Assessment of the climate-smart agriculture interventions towards the avenues of sustainable production-Consumption. Sustainability. 14(14), 8410, doi: 10.3390/su14148410.
doi: 10.3390/su14148410 |
[48] |
Rahman M.M., Connor J.D., 2022. The effect of high-yielding variety on rice yield, farm income, and household nutrition: evidence from rural Bangladesh. Agriculture and Food Security. 11(1), 1-11.
doi: 10.1186/s40066-021-00340-7 |
[49] |
Rana R., Shirin S., Wang J.X., et al., 2022. Revegetation of coal mine degraded arid areas: The role of a native woody species under optimum water and nutrient resources. Environ. Res. 204, 111921, doi: 10.1016/j.envres.2021.111921.
doi: 10.1016/j.envres.2021.111921 |
[50] | Ray D.K., West P.C., Clark M., et al., 2019. Climate change has likely already affected global food production. PLoS ONE. 14(5), 1-18. |
[51] |
Rice E., Smale M., Blanco J.L., 1998. Farmers’ use of improved seed selection practices in Mexican maize: evidence and issues from the Sierra de Santa Marta. World Dev. 26(9), 1625-1640.
doi: 10.1016/S0305-750X(98)00079-5 |
[52] | Rojas-Downing M.M., Nejadhashemi A.P., Harrigan T., et al., 2017. Climate change and livestock: Impacts, adaptation, and mitigation. CLIM. RISK MANAG. 16, 145-163. |
[53] |
Roy R., Sultana S., Wang J.X., et al., 2022. Revegetation of coal mine degraded arid areas: The role of a native woody species under optimum water and nutrient resources. Environ. Res. 204, 111921, doi: 10.1016/j.envres.2021.111921.
doi: 10.1016/j.envres.2021.111921 |
[54] |
Salem M.A., Bedade D.K., Al-Ethawi L., et al., 2020. Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon. 6(10), e05224, doi: 10.1016/j.heliyon.2020.e05224.
doi: 10.1016/j.heliyon.2020.e05224 |
[55] |
Selim M.M., 2020. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. Int. J. Agron. doi: 10.1155/2020/2821678.
doi: 10.1155/2020/2821678 |
[56] |
Singh R., Singh G.S., 2017. Traditional agriculture: a climate-smart approach for sustainable food production. Energy, Ecology and Environment. 2(5), 296-316.
doi: 10.1007/s40974-017-0074-7 |
[57] |
Sinore T., Kissi E., Aticho A., 2018. The effects of biological soil conservation practices and community perception toward these practices in the Lemo District of Southern Ethiopia. Int. Soil Water Conserv. Res. 6(2), 123-130.
doi: 10.1016/j.iswcr.2018.01.004 |
[58] |
Takahashi K., Muraoka R., Otsuka K., 2020. Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agric. Econ. 51(1), 31-45.
doi: 10.1111/agec.v51.1 |
[59] |
Weissengruber L., Möller K., Puschenreiter M., et al., 2018. Long-term soil accumulation of potentially toxic elements and selected organic pollutants through the application of recycled phosphorus fertilizers for organic farming conditions. Nutr. Cycl. Agroecosyst. 110(3), 427-449.
doi: 10.1007/s10705-018-9907-9 |
[60] |
Yigezu G., 2021. The challenges and prospects of Ethiopian agriculture. Cogent Food Agr. 7(1), 1923619, doi: 10.1080/23311932.2021.1923619.
doi: 10.1080/23311932.2021.1923619 |
[61] |
Yu T.Z., Leo M.H., Li Y., et al., 2022. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy. 12(2), 1-18.
doi: 10.3390/agronomy12010001 |
[62] | Zhou P., Lu C.Y., Lin Z.C., 2021. Chapter 6-Tensor principal component analysis. In: LiuY.P., (ed.). Tensor Principal Component Analysis. London: Elsevier Science Publishers, 153-213. |
[1] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[2] | Suchitra PANDEY, Geetilaxmi MOHAPATRA, Rahul ARORA. Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India [J]. Regional Sustainability, 2024, 5(2): 100143-. |
[3] | Ramya Kundayi RAVI, Priya BABY, Nidhin ELIAS, Jisa George THOMAS, Kathyayani Bidadi VEERABHADRAIAH, Bharat PAREEK. Preparedness, knowledge, and perception of nursing students about climate change and its impact on human health in India [J]. Regional Sustainability, 2024, 5(1): 100116-. |
[4] | Ashma SUBEDI, Nani RAUT, Smriti GURUNG. How Himalayan communities are changing cultivation practices in the context of climate change [J]. Regional Sustainability, 2023, 4(4): 378-389. |
[5] | Liton Chandra VOUMIK, Md. Hasanur RAHMAN, Md. Maznur RAHMAN, Mohammad RIDWAN, Salma AKTER, Asif RAIHAN. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[6] | Rula AWAD, Hosam TITI, Aziza MOHAMED-BRAHMI, Mohamed JAOUAD, Aziza GASMI-BOUBAKER. Small ruminant value chain in Al-Ruwaished District, Jordan [J]. Regional Sustainability, 2023, 4(4): 416-424. |
[7] | Fan WU, Youjia LIANG, Lijun LIU, Zhangcai YIN, Jiejun HUANG. Identifying eco-functional zones on the Chinese Loess Plateau using ecosystem service bundles [J]. Regional Sustainability, 2023, 4(4): 425-440. |
[8] | Tobias ACKERL, Lemlem Fitwi WELDEMARIAM, Mary NYASIMI, Ayansina AYANLADE. Climate change risk, resilience, and adaptation among rural farmers in East Africa: A literature review [J]. Regional Sustainability, 2023, 4(2): 185-193. |
[9] | Enoch YELELIERE, Philip ANTWI-AGYEI, Frank BAFFOUR-ATA. Impacts of climate change on the yields of leguminous crops in the Guinea Savanna agroecological zone of Ghana [J]. Regional Sustainability, 2023, 4(2): 139-149. |
[10] | Arifah , Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Knowledge flow analysis of knowledge co-production-based climate change adaptation for lowland rice farmers in Bulukumba Regency, Indonesia [J]. Regional Sustainability, 2023, 4(2): 194-202. |
[11] | Isaac Ayo OLUWATIMILEHIN, Joseph Omojesu AKERELE, Tolulope Adedoyin OLADEJI, Mojisola Hannah OMOGBEHIN, Godwin ATAI. Assessment of the impact of climate change on the occurrences of malaria, pneumonia, meningitis, and cholera in Lokoja City, Nigeria [J]. Regional Sustainability, 2022, 3(4): 309-318. |
[12] | Enoch YELELIERE, Thomas YEBOAH, Philip ANTWI-AGYEI, Prince PEPRAH. Traditional agroecological knowledge and practices: The drivers and opportunities for adaptation actions in the northern region of Ghana [J]. Regional Sustainability, 2022, 3(4): 294-308. |
[13] | Mahir YAZAR, Lukas HERMWILLE, Håvard HAARSTAD. Right-wing and populist support for climate mitigation policies: Evidence from Poland and its carbon-intensive Silesia region [J]. Regional Sustainability, 2022, 3(4): 281-293. |
[14] | Firoz AHMAD, Nazimur Rahman TALUKDAR, Laxmi GOPARAJU, Chandrashekhar BIRADAR, Shiv Kumar DHYANI, Javed RIZVI. GIS-based assessment of land-agroforestry potentiality of Jharkhand State, India [J]. Regional Sustainability, 2022, 3(3): 254-268. |
[15] | ARIFAH , Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Livelihood vulnerability of smallholder farmers to climate change: A comparative analysis based on irrigation access in South Sulawesi, Indonesia [J]. Regional Sustainability, 2022, 3(3): 244-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||