Regional Sustainability ›› 2024, Vol. 5 ›› Issue (3): 100156.doi: 10.1016/j.regsus.2024.100156cstr: 32279.14.j.regsus.2024.100156
• Full Length Article • Previous Articles Next Articles
Homayoon RAOUFIa,b, Hamidreza JAFARIa,*(), Wakil Ahmad SARHADIc, Esmail SALEHIa
Received:
2023-11-08
Revised:
2024-05-01
Accepted:
2024-08-19
Published:
2024-09-30
Online:
2024-09-25
Contact:
Hamidreza JAFARI
E-mail:hjafari@ut.ac.ir
Homayoon RAOUFI, Hamidreza JAFARI, Wakil Ahmad SARHADI, Esmail SALEHI. Assessing the impact of climate change on agricultural production in central Afghanistan[J]. Regional Sustainability, 2024, 5(3): 100156.
Table 1
Geographical and climatic characteristics of four Meteorological stations in the study area."
Station name | Latitude | Longitude | Average elevation (m a.s.l.) | Average precipitation (mm/a) | Average temperature (°C/a) |
---|---|---|---|---|---|
Karizmir | 34°38′20′′N | 69°03′70′′E′′ | 1905 | 392.00 | 12.90 |
Kabul-airport | 34°33′39′′N | 69°12′38′′E | 1791 | 197.00 | 14.10 |
Qargha | 34°33′10′′N | 69°01′55′′E | 1970 | 360.38 | 12.60 |
Shakardara | 34°40′51′′N | 69°01′00′′E | 2168 | 411.38 | 10.16 |
Table 2
Monthly minimum and maximum temperatures, and monthly precipitation during the reference (1990-2020) and future (2025-2100) periods."
Month | Reference period (1990-2020) | Future period (2025-2100) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP2.6 | RCP4.5 | RCP8.5 | ||||||||||
Tmin (°C) | Tmax (°C) | P (mm) | Tmin (°C) | Tmax (°C) | P (mm) | Tmin (°C) | Tmax (°C) | P (mm) | Tmin (°C) | Tmax (°C) | P (mm) | |
January | -0.20 | 10.20 | 28.20 | 2.40 | 12.30 | 28.70 | 3.40 | 13.30 | 35.10 | 4.90 | 14.30 | 42.70 |
February | 1.20 | 12.10 | 52.20 | 4.80 | 14.90 | 35.20 | 6.10 | 16.10 | 35.80 | 7.50 | 17.00 | 39.80 |
March | 5.60 | 17.30 | 57.70 | 9.50 | 20.00 | 37.60 | 10.40 | 20.70 | 45.80 | 11.90 | 22.10 | 51.90 |
April | 8.20 | 20.90 | 46.60 | 12.20 | 24.60 | 41.80 | 12.80 | 25.50 | 30.60 | 14.30 | 27.00 | 46.90 |
May | 11.50 | 25.10 | 23.70 | 14.60 | 28.10 | 20.80 | 15.00 | 28.90 | 24.30 | 16.30 | 30.20 | 30.30 |
June | 14.60 | 29.40 | 3.20 | 16.90 | 32.10 | 3.90 | 17.40 | 32.90 | 3.50 | 18.60 | 34.00 | 6.90 |
July | 16.70 | 32.10 | 3.40 | 18.50 | 33.30 | 1.90 | 19.30 | 33.90 | 2.00 | 20.40 | 35.10 | 3.20 |
August | 16.10 | 31.50 | 6.00 | 17.40 | 32.80 | 3.50 | 18.40 | 33.20 | 5.50 | 19.70 | 34.50 | 3.70 |
September | 13.20 | 27.80 | 3.90 | 14.30 | 28.40 | 28.00 | 15.20 | 28.90 | 23.00 | 16.70 | 30.60 | 21.00 |
October | 9.20 | 22.30 | 7.40 | 10.90 | 22.90 | 25.20 | 11.80 | 23.50 | 23.20 | 13.30 | 25.10 | 28.30 |
November | 4.90 | 16.00 | 21.20 | 6.60 | 16.80 | 19.90 | 7.40 | 17.50 | 19.80 | 9.00 | 18.80 | 20.00 |
December | 2.00 | 12.10 | 15.30 | 3.70 | 13.30 | 36.30 | 4.40 | 14.20 | 33.60 | 5.90 | 15.20 | 38.20 |
Average | 8.60 | 21.40 | 269.00 | 11.00 | 23.30 | 282.70 | 11.80 | 24.00 | 282.10 | 13.20 | 25.30 | 332.90 |
Table 3
Impact of the average annual temperature change on wheat yield under three scenarios."
Year | RCP2.6 | RCP4.5 | RCP8.5 | |||
---|---|---|---|---|---|---|
Average annual temperature change (°C) | Wheat yield change (%) | Average annual temperature change (°C) | Wheat yield change (%) | Average annual temperature change (°C) | Wheat yield change (%) | |
2025 | 1.23 | -7.80 | 1.59 | -8.30 | 1.95 | -8.80 |
2030 | 1.18 | -7.73 | 1.32 | -7.90 | 1.68 | -8.50 |
2040 | 1.44 | -8.11 | 1.49 | -8.20 | 1.85 | -8.70 |
2050 | 2.41 | -9.51 | 2.78 | -10.00 | 3.53 | -11.10 |
2060 | 2.40 | -9.50 | 2.82 | -10.10 | 3.59 | -11.20 |
2070 | 1.88 | -8.74 | 3.19 | -10.60 | 4.66 | -12.80 |
2080 | 2.54 | -9.70 | 3.82 | -11.60 | 5.37 | -13.80 |
2090 | 3.10 | -10.51 | 4.45 | -12.50 | 7.24 | -16.50 |
2100 | 3.18 | -10.63 | 4.54 | -12.60 | 7.31 | -16.60 |
Average | 2.15 | -9.14 | 2.89 | -10.20 | 4.13 | -12.00 |
Table 4
Impact of the annual maximum temperature change on wheat yield under three scenarios."
Year | RCP2.6 | RCP4.5 | RCP8.5 | |||
---|---|---|---|---|---|---|
Annual maximum temperature change (°C ) | Wheat yield change (%) | Annual maximum temperature change (°C ) | Wheat yield change (%) | Annual maximum temperature change (°C) | Wheat yield change (%) | |
2025 | 0.93 | -1.35 | 1.09 | -1.58 | 2.19 | -3.18 |
2030 | 1.22 | -1.77 | 1.08 | -1.57 | 1.34 | -1.94 |
2040 | 1.19 | -1.73 | 1.26 | -1.83 | 1.54 | -2.23 |
2050 | 2.18 | -3.16 | 2.55 | -3.70 | 3.25 | -4.72 |
2060 | 1.81 | -2.63 | 2.23 | -3.24 | 2.94 | -4.27 |
2070 | 2.23 | -3.24 | 3.59 | -5.21 | 4.99 | -7.24 |
2080 | 1.60 | -2.32 | 2.95 | -4.28 | 4.46 | -6.47 |
2090 | 2.11 | -3.06 | 3.42 | -4.96 | 6.17 | -8.95 |
2100 | 2.90 | -4.21 | 4.22 | -6.12 | 6.93 | -10.05 |
Average | 1.79 | -2.60 | 2.48 | -3.60 | 3.74 | -5.45 |
Table 5
Impact of the annual minimum temperature change on wheat yield under three scenarios."
Year | RCP2.6 | RCP4.5 | RCP8.5 | |||
---|---|---|---|---|---|---|
Annual minimum temperature change (°C) | Wheat yield change (%) | Annual minimum temperature change (°C) | Wheat yield change (%) | Annual minimum temperature change (°C) | Wheat yield change (%) | |
2025 | 1.14 | 2.50 | 0.90 | 2.00 | 1.72 | 3.70 |
2030 | 1.56 | 3.40 | 1.14 | 2.50 | 2.01 | 4.40 |
2040 | 1.72 | 3.70 | 1.69 | 3.70 | 2.16 | 4.70 |
2050 | 3.01 | 6.50 | 2.64 | 5.70 | 3.81 | 8.30 |
2060 | 3.41 | 7.40 | 2.99 | 6.50 | 4.23 | 9.20 |
2070 | 3.20 | 6.90 | 1.94 | 4.20 | 4.76 | 10.30 |
2080 | 4.06 | 8.80 | 2.84 | 6.20 | 5.65 | 12.30 |
2090 | 4.12 | 8.90 | 2.74 | 5.90 | 6.96 | 15.10 |
2100 | 4.62 | 10.00 | 3.22 | 7.00 | 7.45 | 16.20 |
Average | 2.98 | 6.50 | 2.23 | 4.80 | 4.30 | 9.30 |
Table 6
Impact of the average monthly precipitation change on wheat yield under three scenarios."
Variable change | LARS-WG model | SDSM | ||||
---|---|---|---|---|---|---|
RCP2.6 | RCP4.5 | RCP8.5 | RCP2.6 | RCP4.5 | RCP8.5 | |
Average monthly precipitation change (%) | -5.14 | -6.13 | -4.88 | -4.34 | -4.10 | -5.13 |
Wheat yield change (%) | -3.12 | -3.78 | -2.92 | -2.60 | -2.36 | -3.18 |
[1] | Adams R.M., Hurd B.H., Lenhart S., et al., 1998. Effects of global climate change on agriculture: An interpretative review. Clim. Res. 11(1), 19-30. |
[2] | Ahmed M., Hayat R., Ahmad M., et al., 2022. Impact of climate change on dryland agricultural systems: A review of current status, potentials, and further work need. Int. J. Plant Prod. 16(3), 341-363. |
[3] | Aich V., Akhundzadah N.A., Knuerr A., et al., 2017. Climate change in Afghanistan deduced from reanalysis and Coordinated Regional Climate Downscaling Experiment (CORDEX) South Asia simulations. Climate. 5(2), 38, doi: 10.3390/cli5020038. |
[4] | Ali S., Liu Y., Ishaq M., et al., 2017. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods. 6(6), 39, doi: 10.3390/foods6060039. |
[5] | Afghanistan Meteorological Department, 2022. Daily Climatic Data. [2023-05-02]. http://www.amd.gov.af/. |
[6] | Antoniuk V., Zhang X., Andersen M.N., et al., 2023. Spatiotemporal winter wheat water assessment improvement using a water deficit index derived from an Unmanned Aerial System in the North China Plain. Sensors. 23(4), 1903, doi: 10.3390/s23041903. |
[7] | Arunrat N., Sereenonchai S., Chaowiwat W., et al., 2022. Climate change impact on major crop yield and water footprint under CMIP 6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 807(2), 150741, doi: 10.1016/j.scitotenv.2021.150741. |
[8] | Ashfaq M., Zulfiqar F., Sarwar I., et al., 2011. Impact of climate change on wheat productivity in mixed cropping system of Punjab. Soil Environ. 30(2), 110-114. |
[9] | Baghanam A.H., Nourani V., Sheikhbabaei A., et al., 2020. Statistical downscaling and projection of future temperature change for Tabriz city, Iran. Earth Environ. Sci. 491, 012009, doi: 10.1088/1755-1315/491/1/012009. |
[10] | Bello Z.A., van Rensburg L.D., Dlamini P., et al., 2022. Characterisation and effects of different levels of water stress at different growth stages in Malt barley under water limited conditions. Plants (Basel). 11(5), doi: 10.3390/plants11050578. |
[11] |
Bouras E., Jarlan L., Khabba S., et al., 2019. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci Rep. 9(1), 19142, doi: 10.1038/s41598-019-55251-2.
pmid: 31844076 |
[12] | Daloz A.S., Rydsaa J.H., Hodnebrog O., et al., 2021. Direct and indirect impacts of climate change on wheat yield in the Indo-Gangetic plain in India. J. Agric. Food Res. 4, 100132, doi: 10.1016/j.jafr.2021.100132. |
[13] | FAO Food and Agriculture Organization of the United Nations, 2016. Climate Change in Afghanistan. What Does It Mean for Rural Livelihoods and Food Security? [2024-04-29]. https://www.unep.org/resources/report/climate-change-afghanistan-what-does-it-mean-rural-livelihoods-and-food-security. |
[14] | FAO, 2019. Afghanistan Droughts and Risk Management Strategies. [2023-04-29]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1366257/. |
[15] | Farooq A., Farooq N., Akbar H., et al., 2023. A critical review of climate change impact at a global scale on cereal crop production. Agronomy-Basel. 13(1), 162, doi: 10.3390/agronomy13010162. |
[16] | Gay C., Estrada F., Conde C., et al., 2006. Potential impacts of climate change on agriculture: a case of study of coffee production in Veracruz, Mexico. Clim. Change. 79(3-4), 259-288. |
[17] | Gul A., Chandio A.A., Siyal S.A., et al., 2022. How climate change is impacting the major yield crops of Pakistan? An exploration from long- and short-run estimation. Environ. Sci. Pollut. Res. 29, 26660-26674. |
[18] | Gupta A.K., Nair S.S., 2012. Environmental Extremes Disaster Risk Management-Addressing Climate Change. New Delhi: National Institute of Disaster Management, 40. |
[19] | Gurara M.A., Jilo N.B., Tolche A.D., 2021. Impact of climate change on potential evapotranspiration and crop water requirement in Upper Wabe Bridge watershed, Wabe Shebele River Basin, Ethiopia. J. Afr. Earth Sci. 180, 1-15. |
[20] | Hanif U., Syed S.H., Ahmad R., et al., 2010. Economic impact of climate change on the agricultural sector of Punjab. Pak. Dev. Rev. 49, 771-798. |
[21] | Haris A.V.A., Biswas S., Chhabra V., et al., 2013. Impact of climate change on wheat and winter maize over a sub-humid climatic environment. Curr. Sci. 104(2), 206-214. |
[22] | Hassan Z., Shamsudin S., Harun S., 2013. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 116(1-2), 243-257. |
[23] | Hussain J., Khaliq T., Asseng S., et al., 2020. Climate change impacts and adaptations for wheat employing multiple climate and crop models in Pakistan. Clim. Change. 163(1), 253-266. |
[24] | ICMPD International Centre for Migration Policy Development, 2023. Migration Outlook Mediterranean. [2023-05-02]. https://www.icmpd.org/file/download/59113/file/ICMPD%2520Migration%2520Outlook%2520Mediterranean%25202023.pdf. |
[25] | IPCC Intergovernmental Panel on Climate Change, 2014. Climate Change 2014:Synthesis Report. [2023-05-02]. https://www.ipcc.ch/report/ar5/syr/. |
[26] | Jawid A., 2020. A Ricardian analysis of the economic impact of climate change on agriculture: Evidence from the farms in the central highlands of Afghanistan. J. Asian Econ. 67, 101177, doi: 10.1016/j.asieco.2020.101177. |
[27] | Jha R.K., Kalita P.K., Cooke R.A., 2021. Assessment of climatic parameters for future climate change in a major agricultural state in India. Climate. 9(7), 111, doi: 10.3390/cli9070111. |
[28] | Junjua P.Z., Samad G., Khan N.U., et al., 2010. Impact of climate change on wheat production: A case study of Pakistan. The Pakistan Development Review. 49(4), 799-822. |
[29] | Kambale J.B., Barikara U., Hadimani D.K., 2023. Climate change and its impact on crop water requirement of mulberry (Morus spp., oraceae) crop in Yadgir District, Karnataka, India. International Journal of Environment and Climate Change. 13(8), 1969-1977. |
[30] | Khan M.J., Malik A., Rahman M., et al., 2021. Assessment of crop water requirement for various crops in Peshawar, Pakistan using the CROPWAT model. Irrigation and Drainage Systems Engineering. 10(9), 2-8. |
[31] | Khan N.A., Anwar M.S., Khan M.I., 1988. Relationship between rainfall, acreage and wheat production in the northern Punjab: A statistical analysis. Pakistan Journal of Agricultural Research. 9(3), 281-288. |
[32] | Liu B., Asseng S., Liu L.L., et al., 2016. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling. Glob. Change Biol. 22(5), 1890-1903. |
[33] | Ministry of Agriculture, Irrigation and Livestock, 2022. Daily Climatic Data. [2023-07-02]. https://mail.gov.af. |
[34] | Ministry of Energy and Water, 2022. Daily Climatic Data. [2023-07-02]. https://mew.gov.af. |
[35] | Morgounove A., Sonder K., Abugalieva A., et al., 2018. Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding. PLoS One. 13(10), e0204932, doi: 10.1371/journal.pone.0204932. |
[36] | Mudelsee M., 2019. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 190, 310-322. |
[37] | Munawar S., Rahman G., Moazzam M.F.U., et al., 2022. Future climate projections using SDSM and LARS-WG downscaling methods for CMIP 5 GCMs over the transboundary Jhelum River Basin of the Himalayas Region. Atmosphere. 13(6), 898, doi: 10.3390/atmos13060898. |
[38] | Naikwade P.V., 2022. Impact of climate change on wheat productivity in India. In: Proceedings of International Conference on Extreme Weather Events under Changing Climate in Indian Himalayan Region. Chandigarh: Mohindra Publishing House, 145-158. |
[39] | NEPA National Environmental Protection Agency, 2018. Second National Communication under UNFCCC, Kabul, Afghanistan. [2023-05-10]. https://www.nepa.gov.af/service3. |
[40] | Ortiz R., Sayre K.D., Govaerts B., et al., 2008. Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment. 126(1-2), 46-58. |
[41] | Osman R., Ata-Ul-Karim S.T., Tahir M.N., et al., 2022. Multi-model ensembles for assessing the impact of future climate change on rainfed wheat productivity under various cultivars and nitrogen levels. Eur. J. Agron. 139, 126554, doi: 10.1016/j.eja.2022.126554. |
[42] |
Paymard P., Yaghoubi F., Nouri M., et al., 2019. Projecting climate change impacts on rainfed wheat yield, water demand, and water use efficiency in northeast Iran. Theor. Appl. Climatol. 138(3-4), 1361-1373.
doi: 10.1007/s00704-019-02896-8 |
[43] | Radhakrishnan K., Sivaraman I., Jena S.K., et al., 2017. A climate trend analysis of temperature and rainfall in India. Climate Change and Environmental Sustainability. 5(2), 146-153. |
[44] | Rezaei E.E., Siebert S., Hunging H., et al., 2018. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 8, 4891, doi: 10.1038/s41598-018-23101-2. |
[45] | Saei M., Mohammadi H., Ziaee S., et al., 2019. The impact of climate change on grain yield and yield variability in Iran. Iranian Economic Review. 23(2), 509-531. |
[46] | Sarwary M., Samiappan S., Khan G.D., et al., 2023. Climate change and cereal crop productivity in Afghanistan: Evidence based on panel regression model. Sustainability. 15(14), 10963, doi: 10.3390/su151410963. |
[47] | Semenov M.A., Barrow M.E., 2002. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies. [2023-06-10]. https://www.researchgate.net/publication/268304865_LARS-WG_A_Stochastic_Weather_Generator_for_Use_in_Climate_Impact_Studies. |
[48] | Shafiq M.N., Gillani S., Shafiq S., 2021. Climate change and agricultural production in Pakistan. Journal of Energy & Environment. 2(2), 47-54. |
[49] | Shakoor U., Rashid M., Iftikhar-ul-Hussnian M., et al., 2018. Time series evaluation of climate change on wheat crop production of Pakistan. Int. J. Mod. Agric. 7(3), 27-36. |
[50] | Sharma R., Sonder K., Sika G., 2015. Potential impact of climate change trends on wheat production and mitigation strategies in Afghanistan. J. Agric. Sci. 7(4), 40-47. |
[51] | Sonkar G., Mall R.K., Banerjee T., et al., 2019. Vulnerability of Indian wheat against rising temperature and aerosols. Environ. Pollut. 254(A), 112946, doi: 10.1016/j.envpol.2019.07.114. |
[52] |
Subedi A., Raut N., Gurung S., 2023. How Himalayan communities are changing cultivation practices in the context of climate change. Reg. Sustain. 4(4), 378-389.
doi: 10.1016/j.regsus.2023.11.001 |
[53] | Tiwari V., Matin M.A., Qamer F.M., et al., 2020. Wheat area mapping in Afghanistan based on optical and SAR time-series images in google earth engine cloud environment. Front. Environ. Sci. 8, 77, doi: 10.3389/fenvs.2020.00077. |
[54] | UNDP United Nations Development Programm, 2019. Climate Change Scenarios for Agriculture of Afghanistan. [2023-05-02]. https://www.undp.org/afghanistan/publications/climate-change-scenarios-agriculture-afghanistan. |
[55] | United States Department of Agriculture, 2023. Foreign Agricultural Service: Country Summary, Afghanistan. [2023-05-02]. https://ipad.fas.usda.gov/countrysummary/default.aspx?id=AF. |
[56] | Wang B., Liu D.L., Asseng S., et al., 2015. Impact of climate change on wheat flowering time in eastern Australia. Agric. For. Meteorol. 209, 11-21. |
[57] | World Bank, 2014. Islamic Republic of Afghanistan, Agricultural Sector Review [2023-05-02]. http://documents.worldbank.org/curated/en/245541467973233146/pdf/AUS9779-REVISED-WP-PUBLIC-Box391431B-Final-Afghanistan-ASR-web-October-31-2014.pdf. |
[58] | World Bank, 2021. Climate Risk Country Profile: Afghanistan. Washington: World Bank Group. [2023-05-12]. https://www.adb.org/publications/climate-risk-country-profile-afghanistan |
[59] | You L.Z., Rosegrant M.W., Wood S., et al., 2009. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 149(6-7), 1009-1014. |
[60] | Zeb A., Khattak I., Naveed S., et al., 2013. Analysis of climatic change and its negative impact on agriculture. Scholarly Journal of Agricultural Science. 3(6), 233-237. |
[61] | Zhao C., Liu B., Piao S.L., et al., 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. U. S. A. 114(35), 9326-9331. |
[62] | Zhong Y.Q.W., Shangguan Z.P., 2014. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in northwest China. PLoS One. 9(6), doi: 10.1371/journal.pone.0098850. |
[63] | Zhou T.W., Wu P.T., Sun S.K., et al., 2017. Impact of future climate change on regional crop water requirement-A case study of Hetao Irrigation District, China. Water. 9(6), 429, doi: 10.3390/w9060429. |
[1] | Issa NYASHILU, Robert KIUNSI, Alphonce KYESSI. Climate change vulnerability assessment in the new urban planning process in Tanzania [J]. Regional Sustainability, 2024, 5(3): 100155-. |
[2] | Frank BAFFOUR-ATA, Louisa BOAKYE, Moses Tilatob GADO, Ellen BOAKYE-YIADOM, Sylvia Cecilia MENSAH, Senyo Michael KWAKU KUMFO, Kofi Prempeh OSEI OWUSU, Emmanuel CARR, Emmanuel DZIKUNU, Patrick DAVIES. Climatic and non-climatic factors driving the livelihood vulnerability of smallholder farmers in Ahafo Ano North District, Ghana [J]. Regional Sustainability, 2024, 5(3): 100157-. |
[3] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
[4] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[5] | Suchitra PANDEY, Geetilaxmi MOHAPATRA, Rahul ARORA. Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India [J]. Regional Sustainability, 2024, 5(2): 100143-. |
[6] | Shibu DAS, Kaushal Kumar SHARMA, Suranjan MAJUMDER, Debabrata DAS, Indrajit Roy CHOWDHURY. Spatio-temporal variation and relationship between agricultural efficiency and irrigation intensity in a semi-arid region of India [J]. Regional Sustainability, 2024, 5(2): 100144-. |
[7] | Ramya Kundayi RAVI, Priya BABY, Nidhin ELIAS, Jisa George THOMAS, Kathyayani Bidadi VEERABHADRAIAH, Bharat PAREEK. Preparedness, knowledge, and perception of nursing students about climate change and its impact on human health in India [J]. Regional Sustainability, 2024, 5(1): 100116-. |
[8] | Ashma SUBEDI, Nani RAUT, Smriti GURUNG. How Himalayan communities are changing cultivation practices in the context of climate change [J]. Regional Sustainability, 2023, 4(4): 378-389. |
[9] | Liton Chandra VOUMIK, Md. Hasanur RAHMAN, Md. Maznur RAHMAN, Mohammad RIDWAN, Salma AKTER, Asif RAIHAN. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[10] | Rula AWAD, Hosam TITI, Aziza MOHAMED-BRAHMI, Mohamed JAOUAD, Aziza GASMI-BOUBAKER. Small ruminant value chain in Al-Ruwaished District, Jordan [J]. Regional Sustainability, 2023, 4(4): 416-424. |
[11] | WU Fan, LIANG Youjia, LIU Lijun, YIN Zhangcai, HUANG Jiejun. Identifying eco-functional zones on the Chinese Loess Plateau using ecosystem service bundles [J]. Regional Sustainability, 2023, 4(4): 425-440. |
[12] | Girma TILAHUN, Amare BANTIDER, Desalegn YAYEH. Synergies and trade-offs of climate-smart agriculture (CSA) practices selected by smallholder farmers in Geshy watershed, Southwest Ethiopia [J]. Regional Sustainability, 2023, 4(2): 129-138. |
[13] | Enoch YELELIERE, Philip ANTWI-AGYEI, Frank BAFFOUR-ATA. Impacts of climate change on the yields of leguminous crops in the Guinea Savanna agroecological zone of Ghana [J]. Regional Sustainability, 2023, 4(2): 139-149. |
[14] | Tobias ACKERL, Lemlem Fitwi WELDEMARIAM, Mary NYASIMI, Ayansina AYANLADE. Climate change risk, resilience, and adaptation among rural farmers in East Africa: A literature review [J]. Regional Sustainability, 2023, 4(2): 185-193. |
[15] | Arifah , Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Knowledge flow analysis of knowledge co-production-based climate change adaptation for lowland rice farmers in Bulukumba Regency, Indonesia [J]. Regional Sustainability, 2023, 4(2): 194-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||