Regional Sustainability ›› 2024, Vol. 5 ›› Issue (2): 100144.doi: 10.1016/j.regsus.2024.100144cstr: 32279.14.j.regsus.2024.100144
• Full Length Article • Previous Articles Next Articles
Shibu DASa,*(), Kaushal Kumar SHARMAa, Suranjan MAJUMDERb, Debabrata DASc, Indrajit Roy CHOWDHURYb
Received:
2023-06-07
Revised:
2023-11-29
Accepted:
2024-05-29
Published:
2024-06-30
Online:
2024-07-25
Contact:
Shibu DAS
E-mail:shibudasgeoku2016@gmail.com
Shibu DAS, Kaushal Kumar SHARMA, Suranjan MAJUMDER, Debabrata DAS, Indrajit Roy CHOWDHURY. Spatio-temporal variation and relationship between agricultural efficiency and irrigation intensity in a semi-arid region of India[J]. Regional Sustainability, 2024, 5(2): 100144.
Table 1
Summary of features in Karnataka."
Feature | Value | Date source | |
---|---|---|---|
Total area | 19.10×106 hm2 | Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics ( | |
Net crop area | 10.70×106 hm2 (55.98% of the total reported area in Karnataka) | ||
Total crop area | 13.60×106 hm2 | ||
Area sown more than once a year | 2.89×106 hm2 | ||
Net irrigated area | 4.03×106 hm2 | ||
Total irrigated area | 4.74×106 hm2 (35.01% of the total crop area in Karnataka) | ||
Cropping intensity | 127.07% | ||
Irrigation intensity | 40.63% | ||
Population | Total population | 61.10×106 persons | India Ministry of Home Affairs ( |
Male | 31.00×106 persons (50.69% of the total population in Karnataka ) | ||
Female | 3.01×107 persons (49.31% of the total population in Karnataka) | ||
Number of households | 13.40×106 households | ||
Population density | 3.19 persons/hm2 | ||
Literacy rate | Total literacy rate | 75.36% | |
Male literacy rate | 82.47% | ||
Female literacy rate | 68.08% | ||
Occupation rate | Total occupation rate | 45.60% | |
Male occupation rate | 59.00% | ||
Female occupation rate | 31.90% | ||
Agricultural workers | 49.28% of the total workers in Karnataka | ||
Total cultivators | 23.61% of the total workers in Karnataka | ||
Total agricultural laborers | 25.67% of the total workers in Karnataka) | ||
Agricultural land | Total land | 7.83×106 hm2 (5.66% of the total land in India) | Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics ( |
Marginal land | 3.85×106 hm2 (49.14% of the total land in Karnataka) | ||
Small land | 2.14×106 hm2 (27.30% of the total land in Karnataka) | ||
Semi medium land | 1.27×106 hm2 (16.17% of the total land in Karnataka) | ||
Medium land | 0.51×106 hm2 (6.52% of the total land in Karnataka) | ||
Large land | 6.76 hm2 (0.86% of the total land in Karnataka) | ||
Per capita land area | 1.55 hm2/person |
Table 2
Agricultural efficiency index, irrigation intensity, and residual value in Karnataka during 2004-2005 and 2018-2019."
District | Agricultural efficiency index | Irrigation intensity (%) | Residual value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004-2005 | Rank | 2018-2019 | Rank | Difference value | 2004-2005 | Rank | 2018-2019 | Rank | Difference value | 2004-2005 | 2018-2019 | |
Bagalkot | 211.95 | 1 | 100.77 | 14 | -111.18 | 45.31 | 4 | 62.50 | 4 | 17.19 | 93.29 | -7.28 |
Belgaum | 95.01 | 20 | 135.25 | 3 | 40.24 | 44.38 | 5 | 55.96 | 5 | 11.57 | -22.41 | 29.59 |
Bellary | 108.94 | 13 | 121.47 | 6 | 12.54 | 35.11 | 7 | 45.40 | 9 | 10.30 | -8.28 | 19.67 |
Bengaluru Urban | 155.16 | 2 | 126.35 | 5 | -28.81 | 18.70 | 20 | 38.21 | 15 | 19.50 | 45.60 | 27.17 |
Bidar | 138.00 | 5 | 79.06 | 25 | -58.94 | 10.86 | 26 | 15.95 | 28 | 5.09 | 32.28 | -12.00 |
Bijapur | 128.29 | 6 | 68.88 | 29 | -59.41 | 23.61 | 14 | 38.74 | 14 | 15.13 | 17.67 | -30.50 |
Chamarajanagar | 104.85 | 14 | 117.25 | 7 | 12.40 | 28.61 | 12 | 43.02 | 11 | 14.41 | -7.02 | 16.32 |
Kolar | 81.08 | 25 | 79.88 | 24 | -1.20 | 21.96 | 17 | 25.45 | 25 | 3.49 | -30.68 | -14.65 |
Chikballapur# | - | - | 76.33 | 26 | -28.52 | - | - | 30.14 | 20 | 1.54 | - | -19.91 |
Chikmagalur | 122.12 | 9 | 104.45 | 11 | -17.67 | 11.21 | 25 | 27.20 | 22 | 15.99 | 15.50 | 9.29 |
Chitradurga | 101.83 | 17 | 80.25 | 23 | -21.58 | 18.35 | 21 | 31.05 | 18 | 12.70 | -7.19 | -16.32 |
Dakshin Kannad | 95.56 | 18 | 99.78 | 16 | 4.21 | 55.17 | 2 | 72.77 | 1 | 17.61 | -25.05 | -12.02 |
Davangere | 123.40 | 7 | 103.54 | 13 | -19.86 | 34.67 | 8 | 51.48 | 6 | 16.82 | 5.10 | -0.49 |
Dharwad | 73.69 | 27 | 69.51 | 27 | -4.18 | 12.11 | 24 | 16.90 | 27 | 4.79 | -32.39 | -21.89 |
Gadag | 93.32 | 23 | 42.30 | 30 | -51.02 | 21.31 | 18 | 22.45 | 26 | 1.14 | -14.54 | -51.13 |
Hassan | 115.32 | 11 | 82.16 | 20 | -33.16 | 23.81 | 13 | 26.60 | 23 | 2.79 | 4.27 | -12.78 |
Haveri | 93.67 | 22 | 81.15 | 22 | -12.52 | 16.65 | 22 | 29.97 | 21 | 13.33 | -14.46 | -15.02 |
Kodagu | 88.46 | 24 | 98.58 | 17 | 10.13 | 3.19 | 27 | 0.77 | 30 | -2.43 | -14.86 | 13.07 |
Koppal | 102.43 | 15 | 68.96 | 28 | -33.47 | 32.58 | 9 | 35.37 | 17 | 2.79 | -12.61 | -29.18 |
Mandya | 122.32 | 8 | 116.40 | 8 | -5.92 | 51.89 | 3 | 64.77 | 3 | 12.88 | -0.56 | 7.52 |
Mysore | 109.34 | 12 | 104.02 | 12 | -5.32 | 35.45 | 6 | 40.57 | 12 | 5.12 | -4.12 | 3.97 |
Raichur | 142.97 | 3 | 111.34 | 10 | -31.63 | 29.26 | 11 | 49.21 | 7 | 19.95 | 29.09 | 8.14 |
Bangalore Rural | 142.20 | 4 | 140.41 | 2 | -1.80 | 22.17 | 16 | 26.59 | 24 | 4.43 | 30.98 | 45.47 |
Ramanagara## | - | - | 130.84 | 4 | -12.12 | - | - | 30.75 | 19 | 1.48 | - | 34.39 |
Shimoga | 102.14 | 16 | 114.61 | 9 | 12.46 | 56.39 | 1 | 68.89 | 2 | 12.50 | -23.46 | 4.23 |
Tumkur | 94.29 | 21 | 81.81 | 21 | -12.48 | 22.77 | 15 | 35.38 | 16 | 12.61 | -16.99 | -16.33 |
Udupi | 95.04 | 19 | 100.18 | 15 | 5.14 | 32.26 | 10 | 47.11 | 8 | 14.84 | -17.64 | -2.25 |
Uttar Kannad | 75.09 | 26 | 88.94 | 19 | 13.85 | 20.71 | 19 | 38.85 | 13 | 18.13 | -34.65 | -10.48 |
Gulbarga | 121.64 | 10 | 146.41 | 1 | 24.77 | 14.55 | 23 | 11.30 | 29 | -3.25 | 13.42 | 57.06 |
Yadgir### | - | - | 98.00 | 18 | 22.92 | - | - | 45.04 | 10 | 24.33 | - | -3.67 |
Table 3
Result of the hierarchical cluster analysis (HCA) in Karnataka."
Cluster | Cluster criteria | Encompassing districts | |
---|---|---|---|
2004-2005 | 2018-2019 | ||
1 | Medium to high agricultural efficiency and irrigation intensity (highly productive) | Bagalkot, Bangaluru Urban, Bidar, Bijapur, Chikmagalur, Hassan, Raichur, Bangalore rural, and Gulbarga districts | Bagalkot, Belgaum, Bellary, Bengaluru Urban, Chamarajanagar, Dakshin Kannad, Davangere, Mandya, Mysore, Raichur, Shimoga, Udupi, and Yadgir districts |
2 | Medium agricultural efficiency and irrigation intensity (moderately productive) | Belgaum, Bellary, Chamarajanagar, Dakshin kannad, Davanger, Koppal, Mandaya, Mysore, Shimoga, and Udupi districts | Bidar, Bijapur, Kolar, Chikballapur, Chikmagalur, Chitradurga, Dharwad, Gadag, Hassan, Haveri, Kodagu, Koppal, Tumkur, and Uttar Kannad districts |
3 | Low agricultural efficiency and medium irrigation intensity (low productive) | Kolar, Chitradurga, Dharwad, Gadag, Haveri, Kodagu, Tumkur, and Uttar Kannad districts | Bangalore Rural, Ramanagara, and Gulbarga districts |
Table 4
One-way Analysis of Variance (ANOVA) results between cluster means during 2004-2005."
Variable | Group | Sum of squares | df | Mean square | F-statistic | P-value |
---|---|---|---|---|---|---|
Agricultural efficiency | Between groups | 15.826 | 2.000 | 7.913 | 18.666 | 0.000 |
Within groups | 10.174 | 24.000 | 0.424 | - | - | |
Total | 26.000 | 26.000 | - | - | - | |
Irrigation intensity | Between groups | 14.698 | 2.000 | 7.349 | 15.607 | 0.000 |
Within groups | 11.302 | 24.000 | 0.471 | - | - | |
Total | 26.000 | 26.000 | - | - | - |
Table 5
One-way ANOVA results between cluster means during 2018-2019."
Variable | Group | Sum of squares | df | Mean square | F-statistic | P-value |
---|---|---|---|---|---|---|
Agricultural efficiency | Between groups | 21.307 | 2.000 | 10.653 | 37.389 | 0.000 |
Within groups | 7.693 | 27.000 | 0.285 | - | - | |
Total | 29.000 | 29.000 | - | - | - | |
Irrigation intensity | Between groups | 18.183 | 2.000 | 9.092 | 22.694 | 0.000 |
Within groups | 10.817 | 27.000 | 0.401 | - | - | |
Total | 29.000 | 29.000 | - | - | - |
Fig. 5.
Dendogram of the hierarchical cluster analysis (HCA) of agricultural efficiency and irrigation intensity in Karnataka during 2004-2005 (a) and 2018-2019 (b). #, Chikballapur District was separated from Kolar District in 2007; ##, Ramanagara District craved out from Bangalore Rural District in 2007; ###, Yadgir District craved out from Gulbarga District in 2010. The numbers on the vertical coordinate typically represent the distance or dissimilarity between clusters. This distance is a measure of how different or similar the clusters are to each other. The higher the number, the greater the distance or dissimilarity between the clusters being merged."
Table S1
Robust test of the equality of means during 2004-2005."
Variable | Method | F-statistic | df1 | df2 | P-value |
---|---|---|---|---|---|
Agriculture efficiency | Welch’s test | 16.194 | 2.000 | 14.519 | 0.000 |
Brown-Forsythe test | 18.686 | 2.000 | 12.042 | 0.000 | |
Irrigation intensity | Welch’s test | 16.537 | 2.000 | 15.726 | 0.000 |
Brown-Forsythe test | 16.298 | 2.000 | 22.301 | 0.000 |
Table S2
Post-hoc test of agricultural efficiency and irrigation intensity during 2004-2005."
Variable | Group (I) | Group (J) | Mean difference (I-J) | Standard error | P-value | 95% confidence interval | |
---|---|---|---|---|---|---|---|
Lower bound | Upper bound | ||||||
Agriculture efficiency | 1 | 2 | 1.24968303* | 0.299 | 0.001 | 0.502 | 1.996 |
3 | 1.88131221* | 0.316 | 0.000 | 1.091 | 2.671 | ||
2 | 1 | -1.24968303* | 0.299 | 0.001 | -1.996 | -0.502 | |
3 | 0.63162918 | 0.308 | 0.123 | -0.139 | 1.402 | ||
3 | 1 | -1.88131221* | 0.316 | 0.000 | -2.671 | -1.091 | |
2 | -0.63162918 | 0.308 | 0.123 | -1.402 | 0.139 | ||
Irrigation intensity | 1 | 2 | -1.32859065* | 0.315 | 0.001 | -2.115 | -0.541 |
3 | 0.36172531 | 0.333 | 0.532 | -0.470 | 1.194 | ||
2 | 1 | 1.32859065* | 0.315 | 0.001 | 0.541 | 2.115 | |
3 | 1.69031597* | 0.325 | 0.000 | 0.877 | 2.503 | ||
3 | 1 | -0.36172531 | 0.333 | 0.532 | -1.194 | 0.470 | |
2 | -1.69031597* | 0.325 | 0.000 | -2.503 | -0.877 |
Table S3
Post-hoc test of agriculture efficiency and irrigation intensity during 2018-2019."
Variable | Group (I) | Group (J) | Mean difference (I-J) | Standard error | P-value | Confidence interval at 95% | |
---|---|---|---|---|---|---|---|
Lower bound | Upper bound | ||||||
Agriculture efficiency | 1 | 2 | -1.14066063* | 0.341 | 0.007 | -1.988 | -0.292 |
3 | 1.34459733* | 0.205 | 0.000 | 0.834 | 1.854 | ||
2 | 1 | 1.14066063* | 0.341 | 0.007 | 0.292 | 1.988 | |
3 | 2.48525796* | 0.339 | 0.000 | 1.643 | 3.327 | ||
3 | 1 | -1.34459733* | 0.205 | 0.000 | -1.854 | -0.834 | |
2 | -2.48525796* | 0.339 | 0.000 | -3.327 | -1.643 | ||
Irrigation intensity | 1 | 2 | 1.75411843* | 0.405 | 0.001 | 0.748 | 2.759 |
3 | 1.52506272* | 0.243 | 0.000 | 0.920 | 2.129 | ||
2 | 1 | -1.75411843* | 0.405 | 0.001 | -2.759 | -0.748 | |
3 | -0.22905570 | 0.402 | 0.838 | -1.227 | 0.769 | ||
3 | 1 | -1.52506272* | 0.243 | 0.000 | -2.129 | -0.920 | |
2 | 0.22905570 | 0.402 | 0.838 | -0.769 | 1.227 |
Table S5
Robust test of the equality of means during 2018-2019."
Variable | Method | F-statistic | df1 | df2 | P-value |
---|---|---|---|---|---|
Agriculture efficiency | Welch’s test | 47.854 | 2.000 | 7.499 | 0.000 |
Brown-Forsythe test | 50.992 | 2.000 | 20.080 | 0.000 | |
Irrigation intensity | Welch’s test | 20.018 | 2.000 | 5.966 | 0.002 |
Brown-Forsythe test | 23.500 | 2.000 | 9.708 | 0.000 |
[1] | Alzarliani W.D., Arsyad M., Salam M., et al., 2019. Effect of App utilization on the agricultural efficiency of rural communities. IOP Conference Series: Earth and Environmental Science. 235(1), 012101, doi: 10.1088/1755-1315/235/1/012101. |
[2] | Arnade C., 1998. Using a programming approach to measure international agricultural efficiency and productivity. J. Agric. Econ. 49(1), 67-84. |
[3] | Bhatia S.S., 1967a. A new measure of agricultural efficiency in Uttar Pradesh, India. Econ. Geogr. 43(3), 244-260. |
[4] | Bhatia S.S., 1967b. Spatial variarions, changes and trends in agricultural efficiency in uttar pradesh, 1953-1963. Indian Journal of Agricultural Economics. 22(1), 66-80. |
[5] | Brahmanand P.S., Kumar A., Ghosh S., et al., 2013. Challenges to food security in India. Curr. Sci. 104(7), 841-846. |
[6] | Bren D’Amour C., Reitsma F., Baiocchi, et al., 2017. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. U. S. A. 114(34), 8939-8944. |
[7] | Burja C., Burja V., 2016. Farms size and efficiency of the production factors in Romanian agriculture. Economics of Agriculture. 151(15), 361-374. |
[8] | Chennareddy V., 1967. Production efficiency in south Indian agriculture. Journal of Farm Economics. 49(4), 816, doi: 10.2307/1236938. |
[9] | Cupak A., Ziernicka-wojtaszek A., Krużel J., et. al., 2019. The use of hierarchical cluster analysis for grouping atmospheric precipitation in Poland. E3S Web of Conferences. 86, 00018, doi: 10.1051/e3sconf/20198600018. |
[10] | Dayal E., 1984. Agricultural productivity in India: A spatial analysis. Ann. Assoc. Am. Geogr. 74(1), 98-123. |
[11] | Department of Economics and Statistics, 2005. Statistical Abstract of Karnataka, 2004-2005. Bangalore: Directorate of Economics and Statistics Planning Programme Monitoring & Statistics Department. |
[12] | Department of Economics and Statistics, 2019. Statistical Abstract of Karnataka, 2018-2019. Bangalore: Directorate of Economics and Statistics Planning Programme Monitoring & Statistics Department. |
[13] | Dutta S., 2012. Assessment of agricultural efficiency and productivity: A study of Hugli district, West Bengal, India. International Journal of Current Research. 4(11), 190-195. |
[14] | Gallup J.L., Radelet S., Warner A., 1997. Economic Growth and the Income of the Poor 1. [2023-04-05]. https://www.semanticscholar.org/paper/Economic-Growth-and-the-Income-of-the-Poor-1-Gallup-Radelet/799ffa0a344e221f6716de130b9c5804a24224ac. |
[15] | Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics, 2014. Agricultural Statistics at a Glance 2014. New Delhi: Oxford University Press, 1-451. |
[16] | Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics, 2017. Agricultural Statistics at a Glance 2017. New Delhi: Government of India Controller of Publications, 415-418. |
[17] | Government of India Ministry of Agriculture Department of Agriculture & Cooperation Directorate of Economics & Statistics, 2019. Agricultural statistics at a glance 2019. New Delhi: Oxford University Press, 1-314. |
[18] | Guo B.S., He D.W., Zhao X.D., et al., 2020. Analysis on the spatiotemporal patterns and driving mechanisms of China’s agricultural production efficiency from 2000 to 2015. Phys. Chem. Earth. 120, 102909, doi: 10.1016/j.pce.2020.102909. |
[19] | Halder J.C., 2019. Modeling the effect of agricultural inputs on the spatial variation of agricultural efficiency in West Bengal, India. Model. Earth Syst. Environ. 5(3), 1103-1121. |
[20] | Hesamian G., 2016. One-way ANOVA based on interval information. Int. J. Syst. Sci. 47(11), 2682-2690. |
[21] | India Ministry of Home Affairs, 2011. Census of India. [2023-04-05]. https://censusindia.gov.in/census.website/. |
[22] | Islam M.S., Siddiqui L., 2020. A geographical analysis of gender inequality in literacy among Muslims of West Bengal, India (2001-2011). GeoJournal. 85, 1325-1354. |
[23] | Jayasree V., Venkatesh B., 2015. Analysis of rainfall in assessing the drought in semi-arid region of Karnataka State, India. Water Resour. Manage. 29, 5613-5630. |
[24] | Jenkins J.C., Scanlan S.J., 2016. Food security in less developed countries, 1970 to 1990. Am. Sociol. Rev. 66(5), 718-744. |
[25] | Kannan E., Balamurugan G., Narayanan S., 2021. Spatial economic analysis of agricultural land use changes: A case of peri-urban Bangalore, India. J. Asia. Pac. Econ. 26(1), 34-50. |
[26] | Kendall M.G., 1953. The analysis of economic time-series-part I: Prices. J. R. Stat. Soc. Ser. D-Stat. 116(1), 11-34. |
[27] | Khursheed V., Taufique M., 2019. Spatial analysis of horticulture efficiency and fruit production concentration in Kashmir Valley. GeoJournal. 85, 1635-1643. |
[28] | Laha A., Kuri P.K., 2011. Measurement of allocative efficiency in agriculture and its determinants: Evidence from rural West Bengal, India. International Journal of Agricultural Research. 6(5), 377-388. |
[29] | Li Z.J., Sarwar S., Jin T., 2021. Spatiotemporal evolution and improvement potential of agricultural eco-efficiency in Jiangsu Province. Front. Energy Res. 9, 746405, doi: 10.3389/fenrg.2021.746405. |
[30] | Ma L., Long H.L., Tang L.S., et al., 2021. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric. 180, 105890, doi: 10.1016/j.compag.2020.105890. |
[31] | Majumdar J., Naraseeyappa S., Ankalaki S., 2017. Analysis of agriculture data using data mining techniques: application of big data. J. Big Data. 4(1), 20, doi: 10.1186/s40537-017-0077-4. |
[32] | Majumder S., 2021. Spatial pattern of multi-dimensional regional disparities in the level of socio-economic development in West Bengal: A geographical analysis. Geosfera Indonesia. 6(3), 260-300. |
[33] | Masiero S., Prakash A., 2015. The Politics of Anti-Poverty Artefacts:Lessons from the Computerization of the Food Security System in Karnataka. In: Proceedings of the Seventh International Conference on Information and Communication Technologies and Development. New York, Association for Computing Machinery, 1-10. |
[34] | Misselhorn A., Aggarwal P., Ericksen P., et al., 2012. A vision for attaining food security. Curr. Opin. Environ. Sustain. 4(1), 7-17. |
[35] | Mondal T.K., Sarkar S., 2021. Analysis of cropping intensity and irrigation intensity in North Twenty Four Parganas district, West Bengal, India. Geographica, Miscellanea Studies, Regional Development. 25(4), 1-13. |
[36] | Murtagh F., Legendre P., 2014. Ward’ s hierarchical agglomerative clustering method: Which algorithms implement ward’ s criterion? J. Classif. 31, 274-295. |
[37] | Nin-Pratt A., Yu B.X., Fan S.G., 2010. Comparisons of agricultural productivity growth in China and India. J. Prod. Anal. 33(3), 209-223. |
[38] | Oehl F., Sieverding E., Ineichen K., et al., 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central europe. Appl. Environ. Microbiol. 69(5), 2816-2824. |
[39] | Ohlan R., 2013. Pattern of regional disparities in socio-economic development in India: District level analysis. Soc. Indic. Res. 114, 841-873. |
[40] | Oshaug A., Haddad L., 2002. Nutrition: A Foundation for Development. Geneva: United Nations Administrative Committee on Coordination Nutrition/Standing Committee on Nutrition, 52. |
[41] | Pang J.X., Chen X.P., Zhang Z.L., et al., 2016. Measuring eco-efficiency of agriculture in China. Sustainability. 8(4), 398, doi: 10.3390/su8040398. |
[42] | Panth A.S., 1997. Social networks and food security in rural karnataka. Econ. Polit. Week. 32(15), 756-758. |
[43] | Pattanayak U., Mallick M., 2018. A study on irrigation and agricultural productivity in odisha. Econ. Affa. 63(2), 317-323. |
[44] | Pender J., Fafchamps M., 2006. Land lease markets and agricultural efficiency in Ethiopia. J. Afr. Econ. 15(2), 251-284. |
[45] | Pimentel D., Huang X., Cordova A., et al., 1997. Impact of population growth on food supplies and environment. Popul. Env. 19(1), 9-14. |
[46] | Rao V.M., Deshpande R.S., 2002. Food security in drought-prone areas: A study in karnataka. Econ. Polit. Week. 37(35), 3677-3681. |
[47] | Rujasiri P., Chomtee B., 2009. Comparison of clustering techniques for cluster analysis. Int. J. Agric. Nat. Resour. 43(2), 378-388. |
[48] | Sapre S.G., Deshpande V.D., 1964. Inter-district variations in agricultural efficiency in Maharashtra State. Indian Journal of Agricultural Economics. 19(1), 242-252. |
[49] | Shafi M., 1960. Measurement of agricultural efficiency in uttar pradesh. Econ. Geogr. 36(4), 296-305. |
[50] |
Tang Z., Engel B.A., Pijanowski B.C., 2005. Forecasting land use change and its environmental impact at a watershed scale. J. Environ. Manage. 76(1), 35-45.
pmid: 15854735 |
[51] | Tchale H., 2009. The efficiency of smallholder agriculture in Malawi. Afr. J. Agric. Resour. Econ.-AFJARE. 3(2), 101-121. |
[52] | Toma E., Dobre C., Dona I., et al., 2015. DEA applicability in assessment of agriculture efficiency on areas with similar geographically patterns. Agriculture and Agricultural Science Procedia. 6, 704-711. |
[53] | Wahid Z., Latiff A.I., Ahmad K., 2018. Application of one-way ANOVA in completely randomized experiments. Journal of Physics: Conference Series. 949(1), doi: 10.1088/1742-6596/949/1/012017. |
[54] | Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of American Stastical Association. 58(301), 236-244. |
[55] | Zeng W., Lu T., Liu Z.L., et al., 2021. Research on a laser ultrasonic visualization detection method for human skin tumors based on pearson correlation coefficient. Opt. Laser Technol. 141, 107117, doi: 10.1016/j.optlastec.2021.107117. |
[56] |
Zhou Z.X., Li M.T., 2017. Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: A case study of the Xi’an metropolitan zone. J. Geogr. Sci. 27(12), 1499-1520.
doi: 10.1007/s11442-017-1449-6 |
[1] | Frank BAFFOUR-ATA, Louisa BOAKYE, Moses Tilatob GADO, Ellen BOAKYE-YIADOM, Sylvia Cecilia MENSAH, Senyo Michael KWAKU KUMFO, Kofi Prempeh OSEI OWUSU, Emmanuel CARR, Emmanuel DZIKUNU, Patrick DAVIES. Climatic and non-climatic factors driving the livelihood vulnerability of smallholder farmers in Ahafo Ano North District, Ghana [J]. Regional Sustainability, 2024, 5(3): 100157-. |
[2] | Homayoon RAOUFI, Hamidreza JAFARI, Wakil Ahmad SARHADI, Esmail SALEHI. Assessing the impact of climate change on agricultural production in central Afghanistan [J]. Regional Sustainability, 2024, 5(3): 100156-. |
[3] | Camillus Abawiera WONGNAA, Alex Amoah SEYRAM, Suresh BABU. A systematic review of climate change impacts, adaptation strategies, and policy development in West Africa [J]. Regional Sustainability, 2024, 5(2): 100137-. |
[4] | Ashma SUBEDI, Nani RAUT, Smriti GURUNG. How Himalayan communities are changing cultivation practices in the context of climate change [J]. Regional Sustainability, 2023, 4(4): 378-389. |
[5] | Enoch YELELIERE, Thomas YEBOAH, Philip ANTWI-AGYEI, Prince PEPRAH. Traditional agroecological knowledge and practices: The drivers and opportunities for adaptation actions in the northern region of Ghana [J]. Regional Sustainability, 2022, 3(4): 294-308. |
[6] | Firoz AHMAD, Nazimur Rahman TALUKDAR, Laxmi GOPARAJU, Chandrashekhar BIRADAR, Shiv Kumar DHYANI, Javed RIZVI. GIS-based assessment of land-agroforestry potentiality of Jharkhand State, India [J]. Regional Sustainability, 2022, 3(3): 254-268. |
[7] | Dave Paladin BUENAVISTA, Eefke Maria MOLLEE, Morag MCDONALD. Any alternatives to rice? Ethnobotanical insights into the dietary use of edible plants by the Higaonon tribe in Bukidnon Province, the Philippines [J]. Regional Sustainability, 2022, 3(2): 95-109. |
[8] | Philip ANTWI-AGYEI, Emmanuel Mawuli ABALO, Andrew John DOUGILL, Frank BAFFOUR-ATA. Motivations, enablers and barriers to the adoption of climate- smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agroecological zones of Ghana [J]. Regional Sustainability, 2021, 2(4): 375-386. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||