Regional Sustainability ›› 2022, Vol. 3 ›› Issue (4): 294-308.doi: 10.1016/j.regsus.2022.11.002
• Full Length Article • Previous Articles Next Articles
Enoch YELELIEREa,*(), Thomas YEBOAHb, Philip ANTWI-AGYEIa, Prince PEPRAHc
Received:
2022-08-03
Revised:
2022-10-27
Accepted:
2022-11-21
Online:
2022-12-30
Published:
2023-01-31
Contact:
Enoch YELELIERE
E-mail:enochyeleliere.ye@gmail.com
Enoch YELELIERE, Thomas YEBOAH, Philip ANTWI-AGYEI, Prince PEPRAH. Traditional agroecological knowledge and practices: The drivers and opportunities for adaptation actions in the northern region of Ghana[J]. Regional Sustainability, 2022, 3(4): 294-308.
Table 2
Demographic characteristics of respondents."
Characteristic | Classification | Gender | Total | Significance of P-value | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | |||||||
Number | Percentage (%) | Number | Percentage (%) | Number | Percentage (%) | |||
Age | 30-40 years old | 42 | 28.6 | 33 | 45.2 | 75 | 34.1 | NS |
41-50 years old | 58 | 39.5 | 26 | 35.6 | 84 | 38.2 | NS | |
51-60 years old | 37 | 25.2 | 10 | 13.7 | 47 | 21.4 | NS | |
61-70 years old | 7 | 4.8 | 4 | 5.5 | 11 | 5.0 | NS | |
71-80 years old | 3 | 2.0 | 0 | 0.0 | 3 | 1.4 | NS | |
Household size | 2-10 | 132 | 89.8 | 60 | 82.2 | 192 | 87.3 | NS |
11-15 | 11 | 7.5 | 12 | 16.4 | 23 | 10.5 | NS | |
16-20 | 4 | 2.7 | 1 | 1.4 | 5 | 2.3 | NS | |
Marital status | Married | 107 | 72.8 | 55 | 75.3 | 162 | 73.6 | NS |
Divorced | 16 | 10.9 | 4 | 5.5 | 20 | 9.1 | NS | |
Single | 13 | 8.8 | 7 | 9.6 | 20 | 9.1 | NS | |
Separated | 9 | 6.1 | 7 | 9.6 | 16 | 7.3 | NS | |
Widowed | 2 | 1.4 | 0 | 0.0 | 2 | 1.0 | NS | |
Type of family | Polygamous | 80 | 54.4 | 36 | 49.3 | 116 | 52.7 | NS |
Monogamous | 67 | 45.6 | 37 | 50.7 | 104 | 47.3 | NS | |
Educational attainment | No formal education | 96 | 65.3 | 46 | 63.0 | 142 | 64.5 | NS |
Basic school | 11 | 7.5 | 10 | 13.7 | 21 | 9.5 | NS | |
Junior high school | 14 | 9.5 | 11 | 15.1 | 25 | 11.4 | NS | |
Senior high school | 13 | 8.8 | 4 | 5.5 | 17 | 7.7 | NS | |
Tertiary education | 13 | 8.8 | 2 | 2.7 | 15 | 6.8 | NS | |
Farming experience | 5-10 years | 6 | 4.1 | 3 | 4.1 | 9 | 4.1 | NS |
10-15 years | 16 | 10.9 | 13 | 17.8 | 29 | 13.2 | NS | |
≥15 years | 125 | 85.0 | 57 | 78.1 | 182 | 82.7 | NS |
Table 3
Statistics of key traditional agroecological knowledge and practices adopted by smallholder farmers."
Traditional agroecological knowledge and practice | Score | Total weight | Total number | A×N | RII | Rank | ||||
---|---|---|---|---|---|---|---|---|---|---|
Never used (1) | Seldom used (2) | Occasionally used (3) | Often used (4) | Used in every agricultural season (5) | ||||||
Cultivating leguminous crops | 27 | 58 | 117 | 184 | 395 | 781 | 220 | 1100 | 0.710 | 1 |
Mixed crop-livestock | 30 | 46 | 126 | 192 | 385 | 779 | 220 | 1100 | 0.708 | 2 |
Crop rotation | 30 | 54 | 138 | 172 | 370 | 764 | 220 | 1100 | 0.695 | 3 |
Use of traditional agroecological knowledge and practices | 25 | 54 | 159 | 196 | 330 | 764 | 220 | 1100 | 0.695 | 3 |
Soil conservation practices | 28 | 64 | 114 | 232 | 320 | 758 | 220 | 1100 | 0.689 | 4 |
Crop diversification | 34 | 66 | 108 | 168 | 375 | 751 | 220 | 1100 | 0.683 | 5 |
Early planting | 23 | 68 | 189 | 180 | 275 | 735 | 220 | 1100 | 0.668 | 6 |
Replanting or resowing | 47 | 56 | 108 | 164 | 340 | 715 | 220 | 1100 | 0.650 | 7 |
Planting of trees (afforestation) | 37 | 78 | 132 | 232 | 210 | 689 | 220 | 1100 | 0.626 | 8 |
Smallholder farmer-managed natural regeneration | 36 | 82 | 138 | 208 | 225 | 689 | 220 | 1100 | 0.626 | 8 |
Reduction or zero tillage | 35 | 52 | 222 | 188 | 190 | 687 | 220 | 1100 | 0.625 | 9 |
Cover cropping | 20 | 132 | 162 | 108 | 265 | 687 | 220 | 1100 | 0.625 | 9 |
Livestock production | 37 | 104 | 126 | 216 | 175 | 658 | 220 | 1100 | 0.598 | 10 |
Use of compost and manure | 53 | 80 | 99 | 216 | 200 | 648 | 220 | 1100 | 0.589 | 11 |
Mulching | 35 | 102 | 195 | 148 | 160 | 640 | 220 | 1100 | 0.582 | 12 |
Biological control of pests (use of herbs, plants extract etc.) | 59 | 94 | 126 | 132 | 195 | 606 | 220 | 1100 | 0.551 | 13 |
Double ploughing | 31 | 134 | 240 | 100 | 85 | 590 | 220 | 1100 | 0.536 | 14 |
Agroforestry practices | 55 | 128 | 111 | 128 | 160 | 582 | 220 | 1100 | 0.529 | 15 |
Bush fallowing | 54 | 118 | 192 | 84 | 110 | 558 | 220 | 1100 | 0.507 | 15 |
Stone bunding | 78 | 104 | 105 | 88 | 165 | 540 | 220 | 1100 | 0.491 | 16 |
Home or backyard garden | 57 | 150 | 129 | 104 | 95 | 535 | 220 | 1100 | 0.486 | 17 |
Irrigation farming | 101 | 176 | 63 | 32 | 10 | 382 | 220 | 1100 | 0.347 | 18 |
Table 4
Factors influencing smallholder farmers’ adoption of traditional agroecological knowledge and practices."
Factors | B | SE | Wald | df | P-value | Exp(B) |
---|---|---|---|---|---|---|
Farming experience | 0.730 | 0.319 | 5.252 | 1 | 0.022 | 2.075 |
Household farm size | -0.428 | 0.161 | 7.043 | 1 | 0.008 | 0.652 |
Access to credit | -1.395 | 0.434 | 10.344 | 1 | 0.001 | 0.248 |
Access to market | 0.970 | 0.381 | 6.491 | 1 | 0.011 | 2.637 |
Availability of labour | 0.411 | 0.481 | 0.729 | 1 | 0.393 | 1.508 |
Access to climate information or services | -0.501 | 0.698 | 0.516 | 1 | 0.472 | 0.606 |
Access to extension service | -0.710 | 0.542 | 1.715 | 1 | 0.190 | 0.492 |
Access to local resources, information, and expertise | 4.235 | 1.332 | 10.110 | 1 | 0.001 | 69.055 |
Ancestral inheritance | 0.549 | 1.852 | 0.088 | 1 | 0.767 | 1.731 |
Technical competence of smallholder farmers in traditional agroecological knowledge and practices | 1.016 | 0.612 | 2.755 | 1 | 0.097 | 2.762 |
The severity of climate change | -2.889 | 1.357 | 4.534 | 1 | 0.033 | 0.056 |
The perceived risk of climate change | 1.650 | 0.763 | 4.681 | 1 | 0.031 | 5.206 |
Evidence of the success of traditional agroecological knowledge and practices | -0.392 | 0.727 | 0.290 | 1 | 0.590 | 0.676 |
Low-cost alternative and easy to adopt and implement | -2.093 | 1.248 | 2.811 | 1 | 0.094 | 0.123 |
Constant | -1.624 | 2.778 | 0.342 | 1 | 0.559 | 0.197 |
-2log(likelihood) | 219.717 | |||||
Nagelkerke R square | 0.376 | |||||
Chi-square | 4.992 | |||||
Hosmer and Lemeshow test significance | 0.758 | |||||
Significance | 0.0001 |
Table 5
Statistics of opportunities for adopting traditional agroecological knowledge and practices."
Opportunity | Scores | WAI | Rank | ||||
---|---|---|---|---|---|---|---|
Strongly disagree (1) | Disagree (2) | Neither agree nor disagree (3) | Agree (4) | Strongly agree (5) | |||
Improving household food security and nutrition | 9 | 36 | 99 | 244 | 495 | 4.01 | 1 |
Increasing crop yields and household income | 11 | 50 | 90 | 240 | 470 | 3.91 | 2 |
Combating the adverse impact of climate extreme climate events like drought and floods on agricultural systems | 14 | 46 | 87 | 244 | 465 | 3.89 | 3 |
Improving soil quality | 16 | 58 | 78 | 232 | 455 | 3.81 | 4 |
Availability of local resources, land ownership, and tenure system | 27 | 20 | 111 | 236 | 435 | 3.77 | 5 |
Control of pest and disease infestation | 33 | 34 | 93 | 192 | 455 | 3.67 | 6 |
Support from Non-Governmental Organizations (NGOs) and local authorities | 42 | 44 | 54 | 244 | 385 | 3.50 | 7 |
[1] |
Abbam, T., Johnson, F.A., Dash, J., et al., 2018. Spatiotemporal variations in rainfall and temperature in Ghana over the twentieth century, 1900-2014. Earth Space Sci. 5(4), 120-132.
doi: 10.1002/2017EA000327 |
[2] |
Adzawla, W., Alhassan, H., 2021. Effects of climate adaptation on technical efficiency of maize production in Northern Ghana. Agric. Food Econ. 9(1), 1-18.
doi: 10.1186/s40100-020-00175-z |
[3] | Aibinu, A.A., Jagboro, G.O., 2002. The effects of construction delays on project delivery in the Nigerian construction industry. J. Proj. Manag. 20(8), 593-599. |
[4] | Ajani, E.N., Mgbenka, R.N., Okeke, M.N., 2013. Use of indigenous knowledge as a strategy for climate change adaptation among farmers in sub-Saharan Africa: Policy implications. Asian Journal of Agricultural Extension, Economics & Sociology. 2(1), 23-40. |
[5] |
Aniah, P., Kaunza-Nu-Dem, M.K., Ayembilla, J.A., 2019. Smallholder farmers’ livelihood adaptation to climate variability and ecological changes in the savanna agroecological zone of Ghana. Heliyon. 5(4), e01492, doi: 10.1016/j.heliyon.2019.e01492.
doi: 10.1016/j.heliyon.2019.e01492 |
[6] |
Antwi-Agyei, P., Dougill, A.J., Stringer, L.C., 2015. Impacts of land tenure arrangements on the adaptive capacity of marginalized groups: The case of Ghana’s Ejura Sekyedumase and Bongo districts. Land Use Pol. 49, 203-212.
doi: 10.1016/j.landusepol.2015.08.007 |
[7] |
Antwi-Agyei, P., Abalo, E.M., Dougill, A.J.B., et al., 2021. Motivations, enablers, and barriers to the adoption of climate-smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agro-ecological zones of Ghana. Regional Sustainability. 2(4), 375-386.
doi: 10.1016/j.regsus.2022.01.005 |
[8] |
Asaaga, F.A., Hirons, M.A., Malhi, Y., 2020. Questioning the link between tenure security and sustainable land management in cocoa landscapes in Ghana. World Dev. 130, 104913, doi: 10.1016/j.worlddev.2020.104913.
doi: 10.1016/j.worlddev.2020.104913 |
[9] |
Atube, F., Malinga, G.M., Nyeko, M., et al., 2021. Determinants of smallholder farmers’ adaptation strategies to the effects of climate change: Evidence from northern Uganda. Agric. Food Secur. 10(1), 1-14.
doi: 10.1186/s40066-020-00272-8 |
[10] |
Baffour-Ata, F., Antwi-Agyei, P., Apawu, G.O., et al., 2021. Using traditional agroecological knowledge to adapt to climate change and variability in the Upper East Region of Ghana. Environmental Challenges. 4, 100205, doi: 10.1016/j.envc.2021.100205.
doi: 10.1016/j.envc.2021.100205 |
[11] | Battiste, M., 2016. Research ethics for protecting indigenous knowledge and heritage:Institutional and researcher responsibilities. In: N.KDenzin., Y.SLincoln., L.TSmith., (eds.). Handbook of Critical and Indigenous Methodologies. California: SAGE Publications, Inc., 111. |
[12] | Botzen, W.J., Michel-Kerjan, E., Kunreuther, H., et al., 2022. Political affiliation affects adaptation to climate risks: Evidence from New York City. Clim. Change. 138(1), 353-60. |
[13] |
Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77-101.
doi: 10.1191/1478088706qp063oa |
[14] |
Bryan, E., Deressa, T.T., Gbetibouo, G.A., et al., 2009. Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ. Sci. Policy. 12(4), 413-426.
doi: 10.1016/j.envsci.2008.11.002 |
[15] |
Bryan, E., Ringler, C., Okoba, B., et al., 2013. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manage. 114, 26-35.
doi: 10.1016/j.jenvman.2012.10.036 pmid: 23201602 |
[16] | Cáceres-Arteaga, N., Maria, K., Lane, D., 2020. Agroecological Practices as a climate change adaptation mechanism in four highland communities in ecuador. J. Lat. Am. Stud. 19(3), 47-73. |
[17] | Calderón, C.I., Jerónimo, C., Praun, A., et al., 2018. Agroecology-based farming provides grounds for more resilient livelihoods among smallholders in Western Guatemala. Agroecol. Sustain. Food Syst. 42(10), 1128-1169. |
[18] |
Chandra, A., McNamara, K.E., Dargusch, P., 2018. Climate-smart agriculture: perspectives and framings. Clim. Policy. 18(4), 526-541.
doi: 10.1080/14693062.2017.1316968 |
[19] | Creswell, J.W., Poth, C.N., 2016. Qualitative inquiry and research design:Choosing among five approaches. California: Sage publications, Inc. |
[20] |
Dapilah, F., Nielsen, J.Ø., Lebek, K., et al., 2021. He who pays the piper calls the tune: Understanding collaborative governance and climate change adaptation in northern Ghana. Clim. Risk Manag. 32, 100306, doi: 10.1016/j.crm.2021.100306.
doi: 10.1016/j.crm.2021.100306 |
[21] |
Deaconu, A., Mercille, G., Batal, M., 2019. The Agroecological Farmer’s pathways from agriculture to nutrition: a practice-based case from Ecuador’s highlands. Ecol. Food Nutr. 58(2), 142-165.
doi: 10.1080/03670244.2019.1570179 pmid: 30691294 |
[22] |
Deressa, T.T., Hassan, R.M., Ringler, C., et al., 2009. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob. Environ. Change. 19(2), 248-255.
doi: 10.1016/j.gloenvcha.2009.01.002 |
[23] |
Devkota, R.P., Cockfield, G., Maraseni, T.N., 2014. Perceived community-based flood adaptation strategies under climate change in Nepal. Int. J. Glob. Warm. 6(1), 113-124.
doi: 10.1504/IJGW.2014.058758 |
[24] |
Dutta, A., Trivedi, A., Nath, C.P., et al., 2022. A comprehensive review on grain legumes as climate-smart crops: challenges and prospects. Environmental Challenges. 100479, doi: 10.1016/j.envc.2022.100479.
doi: 10.1016/j.envc.2022.100479 |
[25] |
Ensor, J.E., Park, S.E., Attwood, S.J., et al., 2018. Can community-based adaptation increase resilience? Clim Dev. 10(2), 134-151.
doi: 10.1080/17565529.2016.1223595 |
[26] | EPA (Environmental Protection Agency), 2020. Ghana’s Fourth National Communication to the United Nations Framework Convention on Climate Change. Government of Ghana. [2022-07-17]. https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/562873149Ghana-NC4-2-GhNC4.pdf |
[27] | FAO (Food and Agriculture Organisation), 2016. Guiding the Transition to Sustainable Food and Agricultural Systems the 10 Elements of Agroecology. Rome: FAO. |
[28] | FAO, 2017. Sustainable Agriculture for Biodiversity-Biodiversity for Sustainable Agriculture, Rome: FAO. |
[29] | FAO, 2018. The 10 Elements of Agroecology: Guiding the Transition to Sustainable Food and Agricultural Systems. Rome: FAO. |
[30] |
Feleke, F.B., Berhe, M., Gebru, G., et al., 2016. Determinants of adaptation choices to climate change by sheep and goat farmers in Northern Ethiopia: the case of Southern and Central Tigray, Ethiopia. SpringerPlus. 5(1), 1-15.
doi: 10.1186/s40064-015-1659-2 |
[31] |
Fernandez, M., Williams, J., Figueroa, G., et al., 2018. New opportunities, new challenges: Harnessing Cuba’s advances in agroecology and sustainable agriculture in the context of changing relations with the United States. Elementa: Science of the Anthropocene. 6, doi: 10.1525/elementa.337.
doi: 10.1525/elementa.337 |
[32] |
Frondel, M., Simora, M., Sommer, S., 2017. Risk perception of climate change: Empirical evidence for Germany. Ecol Econ. 137, 173-183.
doi: 10.1016/j.ecolecon.2017.02.019 |
[33] | GSS (Ghana Statistical Services), 2013. 2010 Population and Housing Census. Accra: National Analytical report Ghana Statistical Service. |
[34] | Gyampoh, B.A., Asante, W.A., La Rose, D.J., et al., 2011. Mapping and Documenting Indigenous Knowledge in Climate Change Adaptation in Ghana. Africa Adaptation Programme Rep. [2022-22-16]. https://www.researchgate.net/profile/Benjamin-Gyampoh/publication/281741251_MAPPING_AND_DOCUMENTING_INDIGENOUS_KNOWLEDGE_IN_CLIMATE_CHANGE_ADAPTATION_IN_GHANA/links/55f680f108ae6a34f6633f6f/MAPPING-AND-DOCUMENTING-INDIGENOUS-KNOWLEDGE-IN-CLIMATE-CHANGE-ADAPTATION-IN-GHANA.pdf |
[35] | Harrell, F.E., 2015. Binary logistic regression. In: EFrank., JHarrell., (eds.). Regression modeling strategies. Switzerland: Springer, 219-274. |
[36] | Hassan, R.M., Nhemachena, C., 2008. Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis. African J. Agric. Resour. Econ. 2, 83-104. |
[37] |
Holt-Giménez, E., Shattuck, A., van Lammeren, I., 2021. Thresholds of resistance: agroecology, resilience, and the agrarian question. J. Peasant stud. 48(4), 715-733.
doi: 10.1080/03066150.2020.1847090 |
[38] |
Hopkins, P.E., 2007. Thinking critically and creatively about focus groups. Area. 39(4), 528-35.
doi: 10.1111/j.1475-4762.2007.00766.x |
[39] | IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services), 2021. Tackling Biodiversity and Climate Crises Together and Their Combined Social Impacts. [2022-07-19]. http://www.ipbes.net/BiodiversityClimateScience. |
[40] | IPCC (Intergovernmental Panel on Climate Change), 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. [2022-10-01]. https://www.ipcc.ch/report/ar6/wg2/. |
[41] | Kassem, M.A., Khoiry, M.A., Hamzah, N., 2020. Using relative importance index method for developing risk map in oil and gas construction projects. Jurnal Kejuruteraan. 32(3), 441-53. |
[42] |
Kerr, R.B., Nyantakyi-Frimpong, H., Dakishoni, L., et al., 2018. Knowledge politics in participatory climate change adaptation research on agroecology in Malawi. Renew. Agric. Food Syst. 33(3), 238-251.
doi: 10.1017/S1742170518000017 |
[43] |
Kerr, R.B., Madsen, S., Stüber, M., et al., 2021. Can agroecology improve food security and nutrition? A review. Glob. Food Sec. 29, 100540. doi: 10.1016/j.gfs.2021.100540.
doi: 10.1016/j.gfs.2021.100540 |
[44] | King, J.E., 2008. Binary logistic regression. In: J.WOsborne., (ed.). Best Practices in Quantitative Methods. California: SAGE Publications, Incorporated, 358-384. |
[45] |
Klutse, N.A.B., Owusu, K., Nkrumah, F., et al., 2021. Projected rainfall changes and their implications for rainfed agriculture in northern Ghana. Weather. 76(10), 340-347.
doi: 10.1002/wea.4015 |
[46] |
Kremen, C., Iles, A., Bacon, C., 2012. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17(4), 44, doi: 10.5751/ES-05103-170444.
doi: 10.5751/ES-05103-170444 |
[47] |
Larigauderie, A., Mooney, H.A., 2010. The Intergovernmental science-policy platform on biodiversity and ecosystem services: moving a step closer to an IPCC-like mechanism for biodiversity. Curr. Opin. Environ. Sustain. 2(1-2), 9-14.
doi: 10.1016/j.cosust.2010.02.006 |
[48] | Long, M., Zhu, H., Wang, J., et al., 2017. Deep Transfer Learning with Joint Adaptation Networks. In International Conference on Machine Learning. [2022-10-01]. |
[49] |
Makate, C., 2019. Effective scaling of climate-smart agriculture innovations in African smallholder agriculture: A review of approaches, policy, and institutional strategy needs. Environ. Sci. Policy. 96, 37-51.
doi: 10.1016/j.envsci.2019.01.014 |
[50] |
McLennon, E., Dari, B., Jha, G., et al., 2021. Regenerative agriculture and integrative permaculture for sustainable and technology-driven global food production and security. Agron. J. 113(6), 4541-4559.
doi: 10.1002/agj2.20814 |
[51] |
Mihiretu, A., Okoyo, E.N., Lemma, T., 2019. Determinants of adaptation choices to climate change in agro-pastoral dry lands of Northeastern Amhara, Ethiopia. Cogent Environ. Sci. 5(1), 1636548, doi: 10.1080/23311843.2019.1636548.
doi: 10.1080/23311843.2019.1636548 |
[52] |
Millar, J., Connell, J., 2010. Strategies for scaling out impacts from agricultural systems change: the case of forages and livestock production in Laos. Agric. Human. Values. 27(2), 213-225.
doi: 10.1007/s10460-009-9194-9 |
[53] | MoFA (Ministry of Food and Agriculture), 2018. Agriculture in Ghana: Facts and Figures, in Accra, Ministry of Food and Agriculture. [2022-04-28]. https://www.mofa.gov.gh/site/publications/research-reports/376-agriculture-in-ghana-facts-figures-2018. |
[54] | Naab, F. Z., Abubakari, Z., Ahmed, A., 2019. The role of climate services in agricultural productivity in Ghana: The perspectives of farmers and institutions. Clim. Serv. 13, 24-32. |
[55] |
Ndamani, F., Watanabe, T., 2015. Farmers’ perceptions about adaptation practices to climate change and barriers to adaptation: A micro-level study in Ghana. Water. 7(9), 4593-4604.
doi: 10.3390/w7094593 |
[56] |
Nyadzi, E., Werners, S.E., Biesbroek, R., et al., 2021. Techniques and skills of indigenous weather and seasonal climate forecast in Northern Ghana. Clim. Dev. 13(6), 551-562.
doi: 10.1080/17565529.2020.1831429 |
[57] | Nyantakyi-Frimpong, H., 2013. Indigenous Knowledge and Climate Adaptation Policy in Northern Ghana. Waterloo: The Centre for International Governance Innovation |
[58] |
Nyantakyi-Frimpong, H., Mambulu, F.N., Kerr, R.B., et al., 2016. Agroecology and sustainable food systems: Participatory research to improve food security among HIV-affected households in northern Malawi. Soc. Sci. Med. 164, 89-99.
doi: S0277-9536(16)30381-1 pmid: 27475055 |
[59] |
Ogada, M.J., Rao, E.J., Radeny, M., et al., 2020. Climate-smart agriculture, household income and asset accumulation among smallholder farmers in the Nyando basin of Kenya. World Dev. Perspect. 18, 100203, doi: 10.1016/j.wdp.2020.100203.
doi: 10.1016/j.wdp.2020.100203 |
[60] | Pandit, R., Pörtner, H.O., Scholes, R.J., et al., 2021. IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change. [2022-04-28]. https://research-management.mq.edu.au/ws/portalfiles/portal/199334454/Lim_IPBES_report.pdf |
[61] | Shackleton, S., Ziervogel, G., Sallu, S., et al., 2015. Why is socially-just climate change adaptation in sub-Saharan Africa so challenging? A review of barriers identified from empirical cases. Wiley Interdiscip. Rev. Clim. Change. 321-344. |
[62] | Shiferaw, B., Tesfaye, K., Kassie, M., et al., 2014. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather. Clim. Extremes. 3, 67-79. |
[63] |
Sullo, C., King, R.S., Yiridomoh, G.Y., et al., 2020. Indigenous knowledge indicators in determining climate variability in rural Ghana. Rural. Soc. 29(1), 59-74.
doi: 10.1080/10371656.2020.1758434 |
[64] |
Tambo, J.A., 2016. Adaptation and resilience to climate change and variability in north-east Ghana. Int. J. Disaster Risk Reduct. 17, 85-94.
doi: 10.1016/j.ijdrr.2016.04.005 |
[65] |
Taylor, C.M., Belušić, D., Guichard, F., et al., 2017. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature. 544(7651), 475-478.
doi: 10.1038/nature22069 |
[66] |
Thomas, K., Hardy, R.D., Lazrus, H., et al., 2019. Explaining differential vulnerability to climate change: A social science review. Wiley Interdiscip. Rev. Clim. Change. 10(2), e565, doi: 10.1002/wcc.565.
doi: 10.1002/wcc.565 |
[67] |
Thornton, P.K., Herrero, M., 2015. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nat Clim Chang. 5(9), 830-836.
doi: 10.1038/nclimate2754 |
[68] |
Thornton, P.K., Whitbread, A., Baedeker, T., et al., 2018. A framework for priority-setting in climate smart agriculture research. Agric. Syst. 167, 161-175.
doi: 10.1016/j.agsy.2018.09.009 |
[69] |
Tobler, C., Visschers, V.H.M., Siegrist, M., 2012. Consumers’ knowledge about climate change. Clim. Change. 114(2), 189-209.
doi: 10.1007/s10584-011-0393-1 |
[70] | Uddin, M.N., Bokelmann, W., Dunn, E.S., 2017. Determinants of farmers’ perception of climate change: a case study from the coastal region of Bangladesh. Am. J. Clim. Change. 6(1), 151-165. |
[71] | van der Linden, S., 2017. Determinants and measurement of climate change risk perception, worry, and concern. In: M.CNisbet., MSchafer., EMarkowitz., (eds.). The Oxford Encyclopedia of Climate Change Communication. Oxford: Oxford University Press. |
[72] |
Verschuuren, J., 2022. Achieving Agricultural Greenhouse Gas Emission Reductions in the EU Post-2030: What Options Do We Have? Review of European, Comparative and International Environmental Law. [2022-04-28]. https://doi.org/10.1111/reel.12448.
doi: https://doi.org/10.1111/reel.12448 |
[73] | Vorley, B., Lundy, M., MacGregor, J., 2009. Business models that are inclusive of small farmers. In: C.Ada Silva., DBaker., A.WShepherd., (eds.). Agro Industries for Development. Cambridge: CABI for FAO and UNIDO, 186-222. |
[74] | Yaro, J., Wahab, I., Afful-Mensah, G., et al., 2021. The Drivers of Medium-Scale Farms and the Emerging Synergies and Contradictions Among Socially Differentiated Farmers in Northern Ghana. Brighton: Future Agricultures Consortium. |
[75] | Yeleliere, E., Nyamekye, A.B., Antwi-Agyei, P., et al., 2022. Strengthening climate adaptation in the northern region of Ghana: insights from a stakeholder analysis. Clim. Policy. 1-17. |
[76] |
Yu, T.Z, Mahe, L., Li, Y., et al., 2022. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy. 12(2), 436, doi: 10.3390/agronomy12020436.
doi: 10.3390/agronomy12020436 |
[77] |
Zougmoré, R., Jalloh, A., Tioro, A., 2014. Climate-smart soil water and nutrient management options in semiarid West Africa: a review of evidence and analysis of stone bunds and zaï techniques. Agric. Food Secur. 3(1), 1-8.
doi: 10.1186/2048-7010-3-1 |
[1] | Isaac Ayo OLUWATIMILEHIN, Joseph Omojesu AKERELE, Tolulope Adedoyin OLADEJI, Mojisola Hannah OMOGBEHIN, Godwin ATAI. Assessment of the impact of climate change on the occurrences of malaria, pneumonia, meningitis, and cholera in Lokoja City, Nigeria [J]. Regional Sustainability, 2022, 3(4): 309-318. |
[2] | ARIFAH, Darmawan SALMAN, Amir YASSI, Eymal Bahsar DEMMALLINO. Livelihood vulnerability of smallholder farmers to climate change: A comparative analysis based on irrigation access in South Sulawesi, Indonesia [J]. Regional Sustainability, 2022, 3(3): 244-253. |
[3] | Firoz AHMAD, Nazimur Rahman TALUKDAR, Laxmi GOPARAJU, Chandrashekhar BIRADAR, Shiv Kumar DHYANI, Javed RIZVI. GIS-based assessment of land-agroforestry potentiality of Jharkhand State, India [J]. Regional Sustainability, 2022, 3(3): 254-268. |
[4] | Binod DAWADI, Anjula SHRESTHA, Ram Hari ACHARYA, Yam Prasad DHITAL, Rohini DEVKOTA. Impact of climate change on agricultural production: A case of Rasuwa District, Nepal [J]. Regional Sustainability, 2022, 3(2): 122-132. |
[5] | Dave Paladin BUENAVISTA, Eefke Maria MOLLEE, Morag MCDONALD. Any alternatives to rice? Ethnobotanical insights into the dietary use of edible plants by the Higaonon tribe in Bukidnon Province, the Philippines [J]. Regional Sustainability, 2022, 3(2): 95-109. |
[6] | Giribabu DANDABATHULA, Sudhakar Reddy CHINTALA, Sonali GHOSH, Padmapriya BALAKRISHNAN, Chandra Shekhar JHA. Exploring the nexus between Indian forestry and the Sustainable Development Goals [J]. Regional Sustainability, 2021, 2(4): 308-323. |
[7] | Philip ANTWI-AGYEI, Emmanuel Mawuli ABALO, Andrew John DOUGILL, Frank BAFFOUR-ATA. Motivations, enablers and barriers to the adoption of climate- smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agroecological zones of Ghana [J]. Regional Sustainability, 2021, 2(4): 375-386. |
[8] | Morteza SALMANI SABZEVAR, Amirreza REZAEI, Bagher KHALEGHI. Incremental adaptation strategies for agricultural water management under water scarcity condition in Northeast Iran [J]. Regional Sustainability, 2021, 2(3): 224-238. |
[9] | Honghu MENG, Xiaoyang GAO, Yigang SAONG, Guanlong CAO, Jie LI. Biodiversity arks in the Anthropocene [J]. Regional Sustainability, 2021, 2(2): 109-115. |
[10] | Devinia Princess AKINYI, Stanley Karanja NG’ANG’A, Evan GIRVETZ. Trade-offs and synergies of climate change adaptation strategies among smallholder farmers in sub-Saharan Africa: A systematic review [J]. Regional Sustainability, 2021, 2(2): 130-143. |
[11] | Shuhong Yang, Tao Yang. Exploration of the dynamic water resource carrying capacity of the Keriya River Basin on the southern margin of the Taklimakan Desert, China [J]. Regional Sustainability, 2021, 2(1): 73-82. |
[12] | Yaning Chen, Xueqi Zhang, Gonghuan Fang, Zhi Li, Fei Wang, Jingxiu Qin, Fan Sun. Potential risks and challenges of climate change in the arid region of northwestern China [J]. Regional Sustainability, 2020, 1(1): 20-30. |
[13] | Huihui Cao, Guanghui Dong. Social development and living environment changes in the Northeast Tibetan Plateau and contiguous regions during the late prehistoric period [J]. Regional Sustainability, 2020, 1(1): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||