Regional Sustainability ›› 2021, Vol. 2 ›› Issue (4): 375-386.doi: 10.1016/j.regsus.2022.01.005
• Full Length Article • Previous Articles
Philip ANTWI-AGYEIa,*(), Emmanuel Mawuli ABALOa, Andrew John DOUGILLb, Frank BAFFOUR-ATAa
Received:
2021-08-09
Revised:
2021-12-23
Accepted:
2022-01-27
Online:
2021-10-30
Published:
2022-03-18
Contact:
Philip ANTWI-AGYEI
E-mail:pantwi-agyei.sci@knust.edu.gh;philiantwi@yahoo.com
Philip ANTWI-AGYEI, Emmanuel Mawuli ABALO, Andrew John DOUGILL, Frank BAFFOUR-ATA. Motivations, enablers and barriers to the adoption of climate- smart agricultural practices by smallholder farmers: Evidence from the transitional and savannah agroecological zones of Ghana[J]. Regional Sustainability, 2021, 2(4): 375-386.
Table 1
Characteristics of the studied districts (GSS, 2014a, b, c)"
Item | Kintampo South District | Savelugu Municipality | Lambussie-Karni District |
---|---|---|---|
Agro-ecological zone | Wet semi-equatorial climate | Savannah ecological zone | Tropical continental climatic zone |
Average temperature (°C) | 24-30 | 16-42 | 28-31 |
Annual rainfall (mm) | 1400-1800 | 600-1000 | 900-1100 |
Relative humidity (%) | 65 | 50 | 47 |
Major cropping season | March-June | May-October | May-September |
Minor cropping season | August-November | Not applicable | Not applicable |
Main crops | Yam, cassava, cocoyam, rice, plantain, ground nut, cowpea, and other tree crops such as cashew and mango | Maize, rice, cowpea, groundnut, sorghum, soyabean, millet, and cassava | Maize, rice, sorghum, millet, yam groundnut, and cowpea |
Main livelihood activity | Agriculture (crop farming) | Agriculture (crop farming) | Agriculture (crop farming) |
Table 2
Characteristics of the studied communities."
Item | Kintampo South District (N=395; 37.2%) | Savelugu Municipality (N=351; 33.1%) | Lambussie-Karni District (N=315; 29.7%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Apesika | Suamire | Ayorya | Diare | Kukobila | Nkapandzoo | Karni | Kpare | Samoa | |
Total householdsa | 775 | - | 279 | 1129 | - | - | 477 | 144 | 325 |
Sampled households | 166 (42.0%) | 111 (28.1%) | 118 (29.9%) | 211 (60.1%) | 75 (21.4%) | 65 (18.5%) | 89 (28.2%) | 109 (34.6%) | 117 (37.1%) |
Types of farmers | PS | PS | PS | PS | PS | PS | PS | PS | PS |
Table 3
Climate-smart agricultural practices adopted by smallholder farmers in the study area."
Climate-smart agricultural practice | Number of smallholder farmers adopting these practices (n=1061) | RII | Rank | |||
---|---|---|---|---|---|---|
Never used (W=1) | Rarely used (W=2) | Often used (W=3) | Used every year (W=4) | |||
Timely harvesting of produce and storage | 42 | 145 | 564 | 309 | 0.77 | 1 |
Emergency seed banking | 77 | 190 | 398 | 395 | 0.76 | 2 |
Crop rotation | 97 | 141 | 468 | 354 | 0.75 | 3 |
Appropriate and timely weed and pest control | 48 | 229 | 473 | 310 | 0.75 | 3 |
Early planting | 81 | 209 | 537 | 233 | 0.72 | 4 |
Appropriate fertilizer use | 91 | 228 | 476 | 265 | 0.72 | 4 |
Appropriate planting methods and spacing | 73 | 238 | 560 | 189 | 0.71 | 5 |
Planting early maturing varieties of crops | 186 | 200 | 496 | 178 | 0.66 | 6 |
Mixed cropping | 208 | 195 | 454 | 203 | 0.66 | 6 |
Planting legumes among crops | 240 | 230 | 390 | 200 | 0.63 | 7 |
Use of indigenous or traditional agro-ecological knowledge | 231 | 245 | 451 | 133 | 0.62 | 8 |
Cover cropping | 268 | 241 | 388 | 163 | 0.61 | 9 |
Appropriate land preparation, with no slash and burn | 198 | 367 | 355 | 140 | 0.61 | 9 |
Bush fallowing | 293 | 239 | 359 | 169 | 0.60 | 10 |
No burning of residues or biomass on farms | 248 | 372 | 308 | 132 | 0.58 | 11 |
Crop diversification | 236 | 377 | 351 | 96 | 0.58 | 11 |
Crop residue mulching | 357 | 243 | 279 | 181 | 0.57 | 12 |
Zero tillage/minimum tillage | 345 | 241 | 325 | 149 | 0.57 | 12 |
Using drought tolerant crop varieties | 298 | 309 | 351 | 102 | 0.57 | 12 |
Conservation agriculture | 244 | 388 | 372 | 56 | 0.56 | 13 |
Use of pest resistant plant varieties | 320 | 323 | 287 | 130 | 0.56 | 13 |
Use of climate information services | 241 | 395 | 390 | 34 | 0.56 | 13 |
Water management and water harvesting | 385 | 207 | 379 | 89 | 0.55 | 14 |
Mixed farming | 505 | 212 | 285 | 58 | 0.48 | 15 |
Agroforestry and woodlot schemes | 681 | 234 | 128 | 17 | 0.38 | 16 |
Composting | 691 | 258 | 88 | 23 | 0.37 | 17 |
Earth bunding | 785 | 201 | 64 | 10 | 0.34 | 18 |
Crop insurance schemes | 810 | 206 | 33 | 11 | 0.33 | 19 |
Sprinkler and drip irrigation | 870 | 120 | 49 | 21 | 0.32 | 20 |
Tillage by bullock | 906 | 92 | 35 | 27 | 0.31 | 21 |
Stone bunding | 943 | 97 | 18 | 2 | 0.29 | 22 |
Table 4
Motivations for the adoption of climate-smart agricultural practices."
Motivation | N | Mean | SD | Var. | P-value | χ2 | |
---|---|---|---|---|---|---|---|
Yes | No | ||||||
Household food security improvement | 1020 (96.2%) | 40 (3.8%) | 0.960 | 0.191 | 0.036 | 0.091 | 2.86 |
Reducing pests and diseases | 1013 (95.6%) | 47 (4.4%) | 0.960 | 0.206 | 0.042 | 0.790 | 0.07 |
Increasing yields and farm income | 988 (93.2%) | 72 (6.8%) | 0.930 | 0.252 | 0.063 | 0.952 | 0.00 |
Controlling erosion and protecting soil | 948 (89.4%) | 112 (10.6%) | 0.890 | 0.308 | 0.095 | 0.690 | 0.16 |
Avoiding the effect of droughts on farming | 918 (86.6%) | 142 (13.4%) | 0.870 | 0.341 | 0.116 | 0.673 | 0.18 |
Maintaining soil moisture | 916 (86.4%) | 144 (13.6%) | 0.860 | 0.343 | 0.118 | 0.779 | 0.08 |
Avoiding the effect of high temperature on farming | 901 (85.0%) | 159 (15.0%) | 0.850 | 0.357 | 0.128 | 0.387 | 0.75 |
Table 5
Enablers to climate-smart agricultural practices."
Enabler | Number of respondents reporting enablers | WAI | Rank | ||||
---|---|---|---|---|---|---|---|
Very low level | Low level | Moderate level | High level | Very high level | |||
Secured land tenure system arrangement | 178 | 271 | 262 | 223 | 126 | 2.86 | 1 |
Understanding the effects of climate change | 153 | 264 | 406 | 171 | 66 | 2.75 | 2 |
Access to sustainable agricultural technologies | 150 | 297 | 392 | 165 | 56 | 2.70 | 3 |
Access to financial resources to implement climate-smart agriculture practices | 338 | 259 | 113 | 132 | 185 | 2.68 | 4 |
Access to weather and climate information | 236 | 255 | 320 | 193 | 56 | 2.60 | 5 |
Support from social group organizations | 428 | 323 | 150 | 116 | 43 | 2.08 | 6 |
Support from local government authorities | 475 | 277 | 129 | 106 | 73 | 2.08 | 6 |
Support from traditional leaders | 471 | 288 | 123 | 113 | 65 | 2.07 | 8 |
Access to farmer-based insurance | 635 | 174 | 101 | 101 | 49 | 1.83 | 9 |
Table 6
Barriers affecting climate-smart agricultural practices reported by the respondents."
Barrier | Number of respondents reporting barriers | PCI | Rank | |||
---|---|---|---|---|---|---|
No problem | Low level | Moderate level | High level | |||
Incidences of pests and diseases | 15 | 111 | 383 | 551 | 2530 | 1 |
Inadequate access to agricultural credit | 48 | 159 | 216 | 637 | 2502 | 2 |
High cost of improved crop varieties | 24 | 229 | 316 | 491 | 2334 | 3 |
Limited government support with farm inputs | 46 | 211 | 324 | 479 | 2296 | 4 |
Destruction of crops by animals (e.g., cattle) | 147 | 135 | 194 | 584 | 2275 | 5 |
Bushfires destroying crop residues and biomass | 92 | 196 | 276 | 496 | 2236 | 6 |
High illiteracy level of smallholder farmers | 34 | 275 | 348 | 403 | 2180 | 7 |
Limited access to agricultural technologies | 19 | 294 | 436 | 311 | 2099 | 8 |
Lack of knowledge and education on climate-smart agricultural practices | 23 | 339 | 429 | 269 | 2004 | 9 |
Lack of access to productive farm inputs including fertilizers | 70 | 329 | 400 | 261 | 1912 | 10 |
Limited access to weather and climate information | 77 | 362 | 372 | 249 | 1853 | 11 |
Limited user-friendliness of climate-smart agricultural practices | 46 | 419 | 408 | 187 | 1796 | 12 |
Limited access to ready markets and market information | 239 | 259 | 255 | 307 | 1690 | 13 |
Unavailability of improved crop varieties | 101 | 432 | 345 | 182 | 1668 | 14 |
Shortages of timely labor for climate-smart agricultural practices | 197 | 304 | 337 | 222 | 1644 | 15 |
Inadequate agricultural land for climate-smart agricultural practices | 249 | 310 | 269 | 232 | 1544 | 16 |
Insufficient organic materials for composting | 215 | 461 | 192 | 192 | 1421 | 17 |
Insecure land tenure system to accommodate long duration of observing the effects of climate-smart agricultural practices | 214 | 434 | 249 | 163 | 1421 | 17 |
Challenge with bulky nature of manure | 267 | 405 | 158 | 230 | 1411 | 19 |
Lack of enforcement by traditional authorities | 281 | 376 | 258 | 145 | 1327 | 20 |
Taboos and values of community | 506 | 354 | 144 | 56 | 810 | 21 |
Destruction of farms during tribal conflicts | 692 | 207 | 87 | 74 | 603 | 22 |
[1] | Abass, A.B., Ndunguru, G., Mamiro, P., et al., 2014. Pos-tharvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. J.Stored Prod. Res. 57, 49-57. |
[2] |
Abegunde, V.O., Sibanda, M., Obi, A., 2020. Determinants of the adoption of climate-smart agricultural practices by small-scale farming households in King Cetshwayo District Municipality, South Africa. Sustainability. 12(1), 195, doi: 10.3390/su12010195.
doi: 10.3390/su12010195 |
[3] | Adzawla, W., Alhassan, H., 2021. Effects of climate adaptation on technical efficiency of maize production in northern Ghana. Agric. Econ. 9(1), 1-18. |
[4] |
Affognon, H., Mutungi, C., Sanginga, P., et al., 2015. Unpacking postharvest losses in sub-Saharan Africa: a meta-analysis. World Dev. 66, 49-68.
doi: 10.1016/j.worlddev.2014.08.002 |
[5] |
Antwi-Agyei, P., Dougill, A.J., Stringer, L.C., 2015. Barriers to climate change adaptation: evidence from northeast Ghana in the context of a systematic literature review. Clim. Dev. 7(4), 297-309.
doi: 10.1080/17565529.2014.951013 |
[6] |
Antwi-Agyei, P., Amanor, K., Hogarh, J.N., et al., 2021. Predictors of access to and willingness to pay for climate information services in north-eastern Ghana: A gendered perspective. Environ. Dev. 37, 100580, doi: 10.1016/j.envdev.2020.100580.
doi: 10.1016/j.envdev.2020.100580 |
[7] |
Antwi-Agyei, P., Nyantakyi-Frimpong, H., 2021. Evidence of climate change coping and adaptation practices by smallholder farmers in northern Ghana. Sustainability. 13, 1308, doi: 10.3390/su13031308.
doi: 10.3390/su13031308 |
[8] | Anuga, S.W., Gordon, C., Boon, E., et al., 2019. Determinants of climate smart agriculture (CSA) adoption among smallholder food crop farmers in the Techiman Municipality, Ghana. Ghana J. Geog. 11(1), 124-139. |
[9] | Arslan, A., McCarthy, N., Lipper, L., et al., 2015. Climate smart agriculture? Assessing the adaptation implications in Zambia. J.Agric. Econ. 66(3), 753-780. |
[10] |
Aryal, J.P., Rahut, D.B., Maharjan, S., et al., 2018. Factors affecting the adoption of multiple climate smart agricultural practices in the Indo-Gangetic Plains of India. Nat. Resour. Forum. 42(3), 141-158.
doi: 10.1111/narf.2018.42.issue-3 |
[11] |
Asaaga, F.A., Hirons, M.A., Malhi, Y., 2020. Questioning the link between tenure security and sustainable land management in cocoa landscapes in Ghana. World Dev. 130, 104913, doi: 10.1016/j.worlddev.2020.104913.
doi: 10.1016/j.worlddev.2020.104913 |
[12] |
Asante, F.A., Amuakwa-Mensah, F., 2015. Climate change and variability in Ghana: Stocktaking. Climate. 3(1), 78-99.
doi: 10.3390/cli3010078 |
[13] |
Baffour-Ata, F., Antwi-Agyei, P., Apawu, G.O., et al., 2021. Using traditional agroecological knowledge to adapt to climate change and variability in the Upper East Region of Ghana. Environ. Chall. 4, 100205, doi: 10.1016/j.envc.2021.100205.
doi: 10.1016/j.envc.2021.100205 |
[14] | Bhan, S., Behera, U.K., 2014. Conservation agriculture in India-Problems, prospects and policy issues. Int. Soil Water Conserv. 2(4), 1-12. |
[15] |
Braimoh, A.K., Vlek, P.L.G., 2004. The impact of land-cover change on soil properties in northern Ghana. Land Degrad. Dev. 15(1), 65-74.
doi: 10.1002/(ISSN)1099-145X |
[16] |
Branca, G., Perelli, C., 2020. ‘Clearing the air’: common drivers of climate-smart smallholder food production in Eastern and Southern Africa. J.Clean. Prod. 270, 121900, doi: 10.1016/j.jclepro.2020.121900.
doi: 10.1016/j.jclepro.2020.121900 |
[17] |
Breman, H., Groot, J.J.R., van Keulen, H., 2001. Resource limitations in Sahelian agriculture. Glob. Environ. Change. 11(1), 59-68.
doi: 10.1016/S0959-3780(00)00045-5 |
[18] |
Deguine, J.P., Aubertot, J.N., Flor, R.J., et al., 2021. Integrated pest management: good intentions, hard realities. A review. Agron. Sustain. Dev. 41, 38, doi: 10.1007/s13593-021-00689-w.
doi: 10.1007/s13593-021-00689-w |
[19] | Devkota, R.P., Cockfield, G., Maraseni, T.N., 2014. Perceived community-based flood adaptation strategies under climate change in Nepal. Inter. J.Glob. Warm. 6, 113-124. |
[20] |
Erenstein, O., 2002. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Tillage Res. 67(2), 115-133.
doi: 10.1016/S0167-1987(02)00062-4 |
[21] | Essegbey, G.O., Nutsukpo, D., Karbo, N., et al., 2015. National Climate-Smart Agriculture and Food Security Action Plan of Ghana (2016-2020). [2021-11-2]. https://cgspace.cgiar.org/handle/10568/69000. https://cgspace.cgiar.org/handle/10568/69000 |
[22] |
Fagariba, C.J., Song, S.X., Soule Baoro, S.K.G., 2018. Climate change adaptation strategies and constraints in northern Ghana: Evidence of farmers in Sissala West District. Sustainability. 10(5), 1484, doi: 10.3390/su10051484.
doi: 10.3390/su10051484 |
[23] | Food and Agriculture Organization (FAO), 2013. Sourcebook on Climate Smart Agriculture, Forestry and Fisheries. Rome: Food and Agriculture Organization of the United Nations. |
[24] | Food and Agriculture Organization (FAO), 2021. Conservation agriculture-three principles of conservation agriculture. Rome: Food and Agriculture Organization of the United Nations. |
[25] |
Ford, J.D., Berrang-Ford, L., Bunce, A., et al., 2015. The status of climate change adaptation in Africa and Asia. Reg. Environ. Change. 15(5), 801-814.
doi: 10.1007/s10113-014-0648-2 |
[26] | Ghana Statistical Service (GSS), 2014a. 2010 Population and Housing Census: Kintampo South District. Accra: District Analytical Report. |
[27] | Ghana Statistical Service (GSS), 2014b. 2010 Population and Housing Census: Savelugu-Nanton. Accra: District Analytical Report. |
[28] | Ghana Statistical Service (GSS), 2014c. 2010 Population and Housing Census: Lambussie-Karni District. Accra: District Analytical Report. |
[29] | Ghana Statistical Service (GSS), 2015. Ghana Poverty Mapping Report. Accra: Ghana Statistical Service. |
[30] |
Giller, K.E., Witter, E., Corbeels, M., et al., 2009. Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Res. 114(1), 23-24.
doi: 10.1016/j.fcr.2009.06.017 |
[31] | Government of Ghana (GoG), 2013. Ghana National Climate Change Policy. Accra: Ministry of Environment, Science, Technology and Innovation. |
[32] | Government of Ghana (GoG), 2015. Ghana’s Third National Communication Report to the UNFCCC. 2015 Climate Change Report. Ministry of Environment Science, Technology, and Innovation. [2021-11-2]. https://unfccc.int/resource/docs/natc/ghanc3.pdf. |
[33] |
Havemann, T., Negra, C., Werneck, F., 2020. Blended finance for agriculture: exploring the constraints and possibilities of combining financial instruments for sustainable transitions. Agric. Hum. Values. 37(4), 1281-1292.
doi: 10.1007/s10460-020-10131-8 |
[34] | Hossain, M.S., Miah, M.A.M., 2011. Poor farmers’ problem confrontation in using manure towards integrated plant nutrition system. Bangladesh J. Ext. Educ. 23, 139-147. |
[35] | Issahaku, G., Abdulai, A., 2020. Adoption of climate-smart practices and its impact on farm performance and risk exposure among smallholder farmers in Ghana. Aust. J.Agric. Resour. Econ. 64(2), 396-420. |
[36] |
Jew, E.K.K., Whitfield, S., Dougill, A.J., et al., 2020. Farming systems and Conservation Agriculture: Technology, structures and agency in Malawi. Land Use Policy. 95, 104612, doi: 10.1016/j.landusepol.2020.104612.
doi: 10.1016/j.landusepol.2020.104612 |
[37] | Justin, C.O., Williams, C.E., Vera, T.S., 2017. Understanding the factors affecting adoption of subpackages of CSA in Southern Malawi. Int. J.Agric. Econ. Ext. 5(2), 259-265. |
[38] |
Kabir, M., Marković, M.R., Radulović, D., 2019. The determinants of income of rural women in Bangladesh. Sustainability. 11(20), 5842, doi: 10.3390/su11205842.
doi: 10.3390/su11205842 |
[39] | Kassem, M.A., Khoiry, M.A., Hamzah, N., 2020. Using relative importance index method for developing risk map in oil and gas construction projects. J.Kejuruteraan. 32(3), 441-453. |
[40] | Katengeza, S.P., Mangisoni, J.H., Kassie, G.T., et al., 2012. Drivers of improved maize variety adoption in drought prone areas of Malawi. J.Dev. Agric. Econ. 4(14), 393-403. |
[41] | Keshavarz, M., Karami, E., 2014. Farmers’ decision-making process under drought. J.Arid Environ. 108, 43-56. |
[42] |
Khatri-Chhetri, A., Aggarwal, P.K., Joshi, P.K., et al., 2017. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 151, 184-191.
doi: 10.1016/j.agsy.2016.10.005 |
[43] |
Klutse, N.A.B., Owusu, K., Boafo, Y.A., 2020. Projected temperature increases over northern Ghana. SN Appl. Sci. 2(8), 1-14.
doi: 10.1007/s42452-019-1685-8 |
[44] |
Lipper, L., Thornton, P., Campbell, B.M., et al., 2014. Climate-smart agriculture for food security. Nat. Clim. Change. 4(12), 1068-1072.
doi: 10.1038/nclimate2437 |
[45] | Luu, T.D., 2020. Factors influencing farmers’ adoption of climate-smart agriculture in rice production in Vietnam’s Mekong Delta. Asian J. Agric. Dev. 17(1), 109-124. |
[46] | Minia, Z., Agyemang-Bonsu, W.K., 2008. Climate change scenario development. Ghana Climate Change Impacts, Vulnerability and Adaptation Assessments. Accra: Environmental Protection Agency, 2-13. |
[47] |
Myeni, L., Moeletsi, M., Thavhana, M., et al., 2019. Barriers affecting sustainable agricultural productivity of smallholder farmers in the Eastern Free State of South Africa. Sustainability. 11(11), 3003, doi: 10.3390/su11113003.
doi: 10.3390/su11113003 |
[48] |
Ndamani, F., Watanabe, T., 2015. Farmers’ perceptions about adaptation practices to climate change and barriers to adaptation: A micro-level study in Ghana. Water, 7(9), 4593-4604.
doi: 10.3390/w7094593 |
[49] | Nelson, S., Huyer, S., 2016. A Gender-responsive Approach to Climate-Smart Agriculture: Evidence and guidance for practitioners. Climate-Smart Agriculture Practice Brief. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). |
[50] | Niang, I., Ruppel, O.C., Abdrabo, M.A., et al., 2014. IPCC WGII AR5 Chapter 22. Africa.[2021-11-4]. http://papadembafall.com/publications/IPCC%20WGIIAR5-Chap22_Africa.pdf |
[51] |
Nyantakyi-Frimpong, H., 2020. What lies beneath: climate change, land expropriation, and zaï agroecological innovations by smallholder farmers in Northern Ghana. Land Use Policy. 92, 104469, doi: 10.1016/j.landusepol.2020.104469.
doi: 10.1016/j.landusepol.2020.104469 |
[52] |
Ogada, M.J., Rao, E.J.O., Radeny, M., et al., 2020. Climate-smart agriculture, household income and asset accumulation among smallholder farmers in the Nyando Basin of Kenya. World Dev. Perspect. 18, 100203, doi: 10.1016/j.landusepol.2020.104469.
doi: 10.1016/j.landusepol.2020.104469 |
[53] | Ojoko, E.A., Akinwunmi, J.A., Yusuf, S.A., et al., 2017. Factors influencing the level of use of climate-smart Agricultural practices (CSAPs) in Sokoto State, Nigeria. J.Agric. Sci. Belgrade. 62(3), 315-327. |
[54] | Onyeneke, R.U., Igberi, C.O., Uwadoka, C.O., et al., 2018. Status of climate-smart agriculture in southeast Nigeria. Geo. Journal. 83(2), 333-346. |
[55] | Parfitt, J., Barthel, M., Macnaughton, S., 2010. Food waste within food supply chains: quantification and potential for change to 2050. Phil. Trans. R. Soc. B. 365(1554), 3065-3081. |
[56] | Partey, S.T., Zougmoré, R.B., Ouédraogo, M., et al., 2018. Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. J.Clean. Prod. 187, 285-295. |
[57] | Ponnusamy, P., 2012. Using CSPro (census and survey processing system) experience from large scale surveys in India. Int. J. Sci. 2(7), 1-3. |
[58] |
Rahut, D.B., Aryal, J.P., Marenya, P., 2021. Ex-ante adaptation strategies for climate challenges in sub-Saharan Africa: macro and micro perspectives. Environ. Chall. 3, 100035, doi: 10.1016/j.envc.2021.100035.
doi: 10.1016/j.envc.2021.100035 |
[59] | Rochecouste, J.F., Dargusch, P., Cameron, D., et al., 2015. An analysis of the socio-economic factors influencing the adoption of conservation agriculture as a climate change mitigation activity in Australian dryland grain production. Agric. Syst. 135, 20-30. |
[60] | Sain, G., Loboguerrero, A.M., Corner-Dolloff, C., et al., 2017. Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala. Agric. Syst. 151, 163-173. |
[61] | Shikuku, K.M., Mwongera, C., Winowiecki, L.A., et al., 2015. Understanding Farmers’ Indicators in Climate-Smart Agriculture Prioritization in Nwoya District, Northern Uganda. Nwoya District: International Center for Tropical Agriculture (CIAT). |
[62] | Sterne, J.A., 2009. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. Texas: StataCorp LP. |
[63] | Sullivan, G.M., Artino-Jr, A.R., 2013. Analyzing and interpreting data from likert-type scales. J. Graduate Med. Educ. 5(4), 541-542. |
[64] | Thierfelder, C., Matemba-Mutasa, R., Rusinamhodzi, L., 2015 Yield response of maize (Zea maysL.) to conservation agriculture cropping system in southern Africa. Soil Tillage Res. 146, 230-242. |
[65] | Tsige, M., Synnevåg, G., Aune, J.B., 2020. Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Sci. Afr. 7, 1-12. |
[66] | Uddin, M.N., Bokelmann, W., Entsminger, J.S., 2014. Factors affecting farmers’ adaptation strategies to environmental degradation and climate change effects: A farm level study in Bangladesh. Climate. 2(4), 223-241. |
[67] | Williams, P.A., Larbi, R.T., Yeboah, I., et al., 2018. Smallholder farmers experiences of climate variability and change on pineapple production in Ghana: examining adaptation strategies for improved production. J. Agric. Ext. Rural Dev. 10(2), 35-43. |
[68] | Zougmoré, R.B., 2003. Integrated Water and Nutrient Management for Sorghum Production in Semi-Arid Burkina Faso. Wageningen: Wageningen University and Research. |
[69] | Zougmoré, R., Ouattara, K., Mando, A., et al., 2004. Role of nutrients in the success of water and soil conservation techniques (stony cords, grass strips, zai and half-moons) in Burkina Faso. Science and Global Change/Drought. 15(1), 41-48. |
[70] | Zougmoré, R., Jalloh, A., Tioro, A., 2014. Climate-smart soil water and nutrient management options in semiarid West Africa: a review of evidence and analysis of stone bunds and zaï techniques. Agric. Food Secur. 3(1), 1-8. |
[1] | Giribabu DANDABATHULA, Sudhakar Reddy CHINTALA, Sonali GHOSH, Padmapriya BALAKRISHNAN, Chandra Shekhar JHA. Exploring the nexus between Indian forestry and the Sustainable Development Goals [J]. Regional Sustainability, 2021, 2(4): 308-323. |
[2] | Morteza SALMANI SABZEVAR, Amirreza REZAEI, Bagher KHALEGHI. Incremental adaptation strategies for agricultural water management under water scarcity condition in Northeast Iran [J]. Regional Sustainability, 2021, 2(3): 224-238. |
[3] | Devinia Princess Akinyi, Stanley Karanja Ng’ang’a, Evan Girvetz. Trade-offs and synergies of climate change adaptation strategies among smallholder farmers in sub-Saharan Africa: A systematic review [J]. Regional Sustainability, 2021, 2(2): 130-143. |
[4] | Honghu Meng, Xiaoyang Gao, Yigang Song, Guanlong Cao, Jie Li. Biodiversity arks in the Anthropocene [J]. Regional Sustainability, 2021, 2(2): 109-115. |
[5] | Shuhong Yang, Tao Yang. Exploration of the dynamic water resource carrying capacity of the Keriya River Basin on the southern margin of the Taklimakan Desert, China [J]. Regional Sustainability, 2021, 2(1): 73-82. |
[6] | Huihui Cao, Guanghui Dong. Social development and living environment changes in the Northeast Tibetan Plateau and contiguous regions during the late prehistoric period [J]. Regional Sustainability, 2020, 1(1): 59-67. |
[7] | Yaning Chen, Xueqi Zhang, Gonghuan Fang, Zhi Li, Fei Wang, Jingxiu Qin, Fan Sun. Potential risks and challenges of climate change in the arid region of northwestern China [J]. Regional Sustainability, 2020, 1(1): 20-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||