Regional Sustainability ›› 2025, Vol. 6 ›› Issue (6): 100277.doi: 10.1016/j.regsus.2025.100277cstr: 32279.14.REGSUS.20250039
• Full Length Article • Previous Articles Next Articles
Osman ZAKARIa,b,*(
), Charles GYAMFIa,c, Samuel Anim OFOSUd, Ebenezer BOAKYEe, Solomon Tawiah APAFOf, Geophrey Kwame ANORNUa,c, Bernard Nuoleyeng BAATUUWIEg
Received:2024-12-16
Revised:2025-09-18
Accepted:2025-12-15
Published:2025-12-31
Online:2026-01-08
Contact:
* E-mail address: Osman ZAKARI, Charles GYAMFI, Samuel Anim OFOSU, Ebenezer BOAKYE, Solomon Tawiah APAFO, Geophrey Kwame ANORNU, Bernard Nuoleyeng BAATUUWIE. Effects of land use and land cover changes on ecosystem services and functions in the Kulpawn River Basin of Ghana[J]. Regional Sustainability, 2025, 6(6): 100277.
Table 1
Landsat satellite images used in this study."
| Satellite | Sensor | Spatial resolution (m) | Year | Path/Row |
|---|---|---|---|---|
| Landsat 5 | Thematic Mapper (TM) | 30 | 1995 | 194/52 |
| Landsat 7 | Enhanced Thematic Mapper (ETM) | 30 | 2005 | 194/52 |
| Landsat 7 | ETM+ | 30 | 2015 | 194/52 |
| Landsat 8 | Operational Land Imager (OLI) | 30 | 2023 | 195/54 |
Table 2
Land use and land cover (LULC) classification scheme used in this study."
| LULC type | Description | Subclass |
|---|---|---|
| Dense savannah forest | Natural woody vegetation with a canopy cover of 35.00%-65.00% and a height above 5.0 m | Woodlots, canopy woodlands, and sacred groves |
| Light savannah forest | Characterized by shrubs/grasses with a cover of 10.00%-35.00% and a height of 2.5-5.0 m | Shrubs and grasses |
| Water bodies | Areas containing water | Rivers, dams, streams, reservoirs, and marshy areas |
| Built-up areas | Areas covered by settlements, buildings, and infrastructure | Residential areas, commercial areas, industrial areas, road network, rural and urban areas, and bare areas |
| Agricultural lands | Areas under the cultivation of crops | Crop lands, fallow lands, and degraded areas |
Table 3
Ecosystem service value (ESV) coefficients for different LULC types and their equivalent biomes."
| LULC type | Equivalent biome | ESV coefficient (USD/(hm2·a)) |
|---|---|---|
| Dense savannah forest | Tropical forest | 115,230 |
| Light savannah forest | Grassland | 1166 |
| Agricultural lands | Cultivated areas | 6119 |
| Water bodies | Lakes/rivers | 105,382 |
Table 4
Value coefficients for ecosystem functions across equivalent biomes."
| Ecosystem service | Ecosystem function | Tropical forest (×108 USD/(hm2·a)) | Grassland (×108 USD/(hm2·a)) | Cultivated areas (×108 USD/(hm2·a)) | Lakes/rivers (×108 USD/(hm2·a)) |
|---|---|---|---|---|---|
| Provisioning services | Food | 602 | - | 510 | 2288 |
| Water | 47,869 | 313 | 604 | 9198 | |
| Raw materials | 11,739 | 637 | 6 | 92 | |
| Genetic resources | 16 | - | - | - | |
| Regulating services | Air quality regulation | 309 | 8 | 10 | - |
| Climate regulation | 658 | 73 | 10 | 251 | |
| Moderation of extreme events | 108 | - | 993 | 18 | |
| Regulation of water flow | 442 | 43 | 17 | 4221 | |
| Waste treatment | 12 | - | 40 | 50,760 | |
| Erosion prevention | 604 | - | 173 | - | |
| Supporting services | Maintenance of soil fertility | 42 | - | 34 | 6189 |
| Biological control | 14 | - | 621 | 142 | |
| Maintenance of habitat | 19 | - | - | 803 | |
| Maintenance of genetic diversity | 7 | - | - | 17,787 | |
| Cultural services | Recreation | 52,789 | 92 | 3101 | 13,633 |
| Total ESV | 115,230 | 1166 | 6119 | 105,382 | |
Table 5
Areas and area proportions of different LULC types in the KRB in 1995, 2005, 2015, and 2023."
| LULC type | 1995 | 2005 | 2015 | 2023 | ||||
|---|---|---|---|---|---|---|---|---|
| Area (hm2) | Area proportion (%) | Area (hm2) | Area proportion (%) | Area (hm2) | Area proportion (%) | Area (hm2) | Area proportion (%) | |
| Agricultural lands | 90,500 | 8.45 | 96,300 | 8.98 | 100,800 | 9.42 | 103,300 | 9.65 |
| Built-up areas | 295,300 | 27.58 | 314,012 | 29.32 | 320,385 | 29.93 | 340,090 | 31.77 |
| Dense savannah forest | 179,250 | 16.74 | 158,133 | 14.80 | 124,196 | 11.60 | 133,009 | 12.42 |
| Light savannah forest | 321,140 | 30.00 | 340,016 | 31.76 | 348,116 | 32.51 | 349,120 | 32.61 |
| Water bodies | 184,330 | 17.23 | 162,059 | 15.14 | 177,023 | 16.54 | 145,001 | 13.55 |
Table 6
LULC change rates in the KRB from 1995 to 2023."
| LULC type | 1995-2005 | 2005-2015 | 2015-2023 | 1995-2023 | ||||
|---|---|---|---|---|---|---|---|---|
| Change in area (hm2) | Percentage change in area (%) | Change in area (hm2) | Percentage change in area (%) | Change in area (hm2) | Percentage change in area (%) | Change in area (hm2) | Percentage change in area (%) | |
| Agricultural lands | 5800 | 6.41 | 4500 | 4.67 | 2500 | 2.48 | 12,800 | 14.14 |
| Built-up areas | 18,712 | 6.34 | 6373 | 2.11 | 19,705 | 6.15 | 44,790 | 15.17 |
| Dense savannah forest | -21,117 | -11.78 | -33,937 | -21.46 | 8975 | 7.23 | -46,079 | -25.71 |
| Light savannah forest | 18,876 | 5.90 | 8000 | 2.35 | 1154 | 0.34 | 28,030 | 8.73 |
| Water bodies | -22,218 | -12.10 | 12,441 | 7.70 | -27,092 | -15.52 | -36,869 | -20.00 |
Table 7
Estimated ESVs for each LULC type."
| LULC type | ESVs (×108 USD/(hm2·a)) | |||
|---|---|---|---|---|
| 1995 | 2005 | 2015 | 2023 | |
| Agricultural lands | 5.54 | 5.89 | 6.17 | 6.32 |
| Built-up areas | 0.00 | 0.00 | 0.00 | 0.00 |
| Dense savannah forest | 206.55 | 182.22 | 141.11 | 153.45 |
| Light savannah forest | 3.75 | 3.97 | 4.07 | 4.11 |
| Water bodies | 194.25 | 170.84 | 183.95 | 155.40 |
| Total ESV | 410.09 | 362.92 | 335.30 | 319.28 |
Table 8
Estimated values of ecosystem functions in 1995, 2005, 2015, and 2023."
| Ecosystem service | Ecosystem function | Value of ecosystem functions (×108 USD/(hm2·a)) | |||
|---|---|---|---|---|---|
| 1995 | 2005 | 2015 | 2023 | ||
| Provisioning services | Food | 5.73 | 5.15 | 4.66 | 4.70 |
| Water | 104.31 | 92.25 | 90.76 | 79.72 | |
| Raw materials | 22.25 | 20.88 | 19.82 | 17.99 | |
| Genetic resources | 0.03 | 0.03 | 0.02 | 0.02 | |
| Regulating services | Air quality regulation | 0.58 | 0.53 | 0.42 | 0.67 |
| Climate regulation | 1.87 | 1.71 | 1.29 | 1.51 | |
| Moderation of extreme events | 1.13 | 1.75 | 1.14 | 1.19 | |
| Regulation of water flow | 8.73 | 7.72 | 6.26 | 6.98 | |
| Waste treatment | 93.35 | 82.55 | 80.96 | 74.92 | |
| Erosion prevention | 0.18 | 1.12 | 0.92 | 0.98 | |
| Supporting services | Maintenance of soil fertility | 12.54 | 10.23 | 8.87 | 9.22 |
| Biological control | 2.27 | 0.85 | 0.67 | 0. 87 | |
| Maintenance of habitat | 1.51 | 1.43 | 0.17 | 1.31 | |
| Maintenance of genetic diversity | 32.80 | 28.85 | 27.73 | 26.24 | |
| Cultural services | Recreation | 122.81 | 107.87 | 91.61 | 93.83 |
| Total ESV | 410.09 | 362.92 | 335.30 | 319.28 | |
Table 9
Demographic characteristics of the respondents."
| Demographic characteristic | Group | Frequency | Percentage (%) |
|---|---|---|---|
| Age | 18-30 years old | 40 | 20.00 |
| 31-43 years old | 50 | 25.00 | |
| 44-56 years old | 45 | 22.50 | |
| 57-69 years old | 35 | 17.50 | |
| >70 years old | 30 | 15.00 | |
| Gender | Male | 110 | 55.00 |
| Female | 90 | 45.00 | |
| Educational background | Primary education | 51 | 25.50 |
| Secondary education | 46 | 23.00 | |
| Vocational/Technical education | 15 | 7.50 | |
| Tertiary education | 29 | 14.50 | |
| No formal education | 59 | 29.50 | |
| Source of household income | Farming | 70 | 35.00 |
| Livestock rearing | 30 | 15.50 | |
| Fishing | 25 | 12.50 | |
| Extraction of non-timber forest product | 40 | 20.00 | |
| Business/Trade | 10 | 5.00 | |
| Monthly salary | 10 | 5.00 | |
| Remittance | 15 | 7.50 |
| [1] | Aabeyir, R., Peprah, K., Amponsah, A., 2024. Temporal analysis of the state of the Gbele Resource Reserve in the Upper West Region, Ghana. Front. For. Glob. Change. 7, 1353852, doi: 10.3389/ffgc.2024.1353852. |
| [2] | Abungba, J.A., Adjei, K.A., Gyamfi, C., et al., 2022. Implications of land use/land cover changes and climate change on Black Volta Basin future water resources in Ghana. Sustainability. 14(19), 12383, doi: 10.3390/su141912383. |
| [3] | Adiibokah, E., 2020. Assessing Water Security and Adaptation Strategies in the Sissili-Kulpawn Basin of the Northern Region of Ghana. [2024-11-11]. http://udsspace.uds.edu.gh. |
| [4] | Admasu, S., Yeshitela, K., Argaw, M., 2023. Impact of land use and land cover changes on ecosystem service values in the Dire and Legedadi watersheds, central highlands of Ethiopia: Implications for landscape management decision making. Heliyon. 9(4), e15352, doi: 10.1016/j.heliyon.2023.e15352. |
| [5] | Agariga, F., Abugre, S., Appiah, M., 2021. Spatio-temporal changes in land use and forest cover in the Asutifi North District of Ahafo Region of Ghana, (1986-2020). Environmental Challenges. 5, 100209, doi: 10.1016/j.envc.2021.100209. |
| [6] | Alhassan, H., 2020. Farm households’ flood adaptation practices, resilience, and food security in the Upper East region, Ghana. Heliyon. 6(6), e04167, doi: 10.1016/j.heliyon.2020.e04167. |
| [7] |
Amisigo, B.A., McCluskey, A., Swanson, R., 2015. Modeling the impact of climate change on water resources and agricultural demand in the Volta Basin and other basin systems in Ghana. Sustainability. 7(6), 6957-6975.
doi: 10.3390/su7066957 |
| [8] | Ampim, P.A.Y., Ogbe, M., Obeng, E., et al., 2021. Land cover changes in Ghana over the past 24 years. Sustainability. 13(9), 4951, doi: 10.3390/su13094951. |
| [9] | Ampofo, S., Sackey, I., Ampadu, B., 2016. Landscape changes and fragmentation analysis in a Guinea Savannah ecosystem: Case study of Talensi and Nabdam districts of the Upper East region, Ghana. Journal of Geography and Geology. 8(1), 41, doi: 10.5539/jgg.v8n1p41. |
| [10] | Anley, M.A., Minale, A.S., Haregeweyn, N., et al., 2022. Assessing the impacts of land use/cover changes on ecosystem service values in the Rib watershed, Upper Blue Nile Basin, Ethiopia. Trees For. People. 7, 100212, doi: 10.1016/j.tfp.2022.100212. |
| [11] | Anning, A.K., Ofori-Yeboah, A., Baffour-Ata, F., et al., 2022. Climate change manifestations and adaptations in cocoa farms: Perspectives of smallholder farmers in the Adansi South District, Ghana. Curr. Res. Environmental Sustainability. 4, 100196, doi: 10.1016/j.crsust.2022.100196. |
| [12] | Arifeen, H.M., Phoungthong, K., Mostafaeipour, A., et al., 2021. Determine the land-use land-cover changes, urban expansion, and their driving factors for sustainable development in Gazipur, Bangladesh. Atmosphere. 12(10), 1353, doi: 10.3390/atmos12101353. |
| [13] |
Asibey, M.O., Agyeman, K.O., Amponsah, O., et al., 2020. Patterns of land use, crop and forest cover change in the Ashanti region, Ghana. J. Sustain. For. 39(1), 35-60.
doi: 10.1080/10549811.2019.1608453 |
| [14] | Atulley, J., Kwaku, A.A., Owusu-Ansah, E.D., et al., 2022. Modeling the impact of past and future land cover changes on a reservoir catchment hydrology in semi-arid Africa. Research Square. doi: 10.21203/rs.3.rs-1505575. |
| [15] |
Awotwi, A., Yeboah, F., Kumi, M., 2015. Assessing the impact of land cover changes on water balance components of the White Volta Basin in West Africa. Water Environ. J. 29(2), 259-267.
doi: 10.1111/wej.12100 |
| [16] | Baidoo, R., Arko-Adjei, A., Poku-Boansi, M., et al., 2023. Land use and land cover changes implications on biodiversity in the Owabi catchment of Atwima Nwabiagya North District, Ghana. Heliyon. 9(5), e15238, doi: 10.1016/j.heliyon.2023.e15238. |
| [17] | Barenblitt, A., Payton, A., Lagomasino, D., et al., 2021. The large footprint of small-scale artisanal gold mining in Ghana. Sci. Total Environ. 781, 146644, doi: 10.1016/j.scitotenv.2021.146644. |
| [18] | Belay, T., Melese, T., Senamaw, A., 2022. Impacts of land use and land cover change on ecosystem service values in the Afroalpine area of Guna Mountain, Northwest Ethiopia. Heliyon. 8(12), e12246, doi: 10.1016/J.heliyon.2022.e12246. |
| [19] | Berihun, M.L., Tsunekawa, A., Haregeweyn, N., et al., 2019. Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 689, 347-365. |
| [20] | Biedemariam, M., Birhane, E., Demissie, B., et al., 2022. Ecosystem service values as related to land use and land cover changes in Ethiopia: A review. Land. 11(12), 2212, doi: 10.3390/land11122212. |
| [21] | Biney, E., Boakye, E., 2021. Urban sprawl and its impact on land use and land cover dynamics of Sekondi-Takoradi metropolitan assembly, Ghana. Environmental Challenges. 4, 100168, doi: 10.1016/j.envc.2021.100168. |
| [22] |
Boakye, E., Anyemedu, F.O.K., Quaye-Ballard, J.A., et al., 2020. Spatio-temporal analysis of land use/cover changes in the Pra River Basin, Ghana. Appl. Geomat. 12(1), 83-93.
doi: 10.1007/s12518-019-00278-3 |
| [23] | Boampong, J.N., 2020. An assessment of land use/land cover and shoreline changes in the coastal zone of Greater Accra region, Ghana. MSc Thesis. Tromsø: UiT The Arctic University of Norway. |
| [24] | Bosompem, O.A., 2015. Land-use/land cover change and its relationship to changing climate and crop production in the Lower Volta Basin, Ghana. PhD Dissertation. Legon: University of Ghana. |
| [25] | Darko, E., 2015. Hydrogeological Characterization of the White Volta River Basin of Ghana. [2024-11-11]. http://ugspace.ug.edu.gh. |
| [26] | Duku, E., Mattah, P.A.D., Angnuureng, D.B., 2021. Assessment of land use/land cover change and morphometric parameters in the Keta Lagoon Complex Ramsar Site, Ghana. Water. 13(18), 2537, doi: 10.3390/w13182537. |
| [27] | Etwire, P.M., 2020. The impact of climate change on farming system selection in Ghana. Agric. Syst. 179, 102773, doi: 10.1016/j.agsy.2019.102773. |
| [28] | Gautam, L., Rai, R., 2022. Land use and land cover change analysis using google earth engine in Manamati watershed of Kathmandu district, Nepal. The Third Pole: Journal of Geography Education. 22(1), 49-60. |
| [29] | Ghana Statistical Service, 2021. Population and housing census (PHC): Final results, Ghana Statistical Service. [2024-11-11]. https://microdata.statsghana.gov.gh/index.php. |
| [30] | Grais, A.M., Sidman, G., Netzer, M., et al., 2017. Ecosystem Valuation Background Paper for Northern Ghana. Arlington: Winrock International. |
| [31] | Groot, R.D., Brander, L., Solomonides, S., 2020. Update of global ecosystem service valuation database (ESVD). In: Foundation for Sustainable Development. FSD Report No. 2020-06. Wageningen, Netherlands. |
| [32] | Gross, E., Pennink, C., 2018. Impact Evaluation of the Sustainable Water Fund (FDW) Integrated Water Management and Knowledge Transfer in Sisili Kulpawn Basin (FDW/12/GH/02) in the Northern Region of Ghana. [2024-10-30]. https://www.government.nl/binaries/government/documenten/reports/2020/04/30/evaluation-of-projects-co-financed-by-the-sustainable-water-fund-fdw/1++Ghana+IWAD+final+report.pdf. |
| [33] |
Gyimah, R.A.A., Karikari, A.Y., Gyamfi, C., et al., 2020. Spatial evaluation of land use variability on water quality of the Densu Basin, Ghana. Water Supply. 20(8), 3000-3013.
doi: 10.2166/ws.2020.187 |
| [34] | Kang, J.M., Zhang, X., Zhu, X.W., et al., 2021. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 26, e01472, doi: 10.1016/j.gecco.2021.e01472. |
| [35] | Kankam, S., Osman, A., Inkoom, J.N., et al., 2022. Implications of spatio-temporal land use/cover changes for ecosystem services supply in the coastal landscapes of southwestern Ghana, West Africa. Land. 11(9), 1408, doi: 10.3390/land11091408. |
| [36] | Kankam, S., Koo, H., Inkoom, J.N., et al., 2025. Modeling the impacts of coastal land use scenarios on ecosystem services restoration in Southwest Ghana, West Africa. npj Ocean Sustainability. 4, 13, doi: 10.21203/rs.3.rs-4432789/v1. |
| [37] | Li, C.X., Dash, J., Asamoah, M., et al., 2022. Increased flooded area and exposure in the White Volta River Basin in Western Africa, identified from multi-source remote sensing data. Sci Rep. 12, 3701, doi: 10.1038/s41598-022-07720-4. |
| [38] | Li, H., Guan, Q.C., Fan, Y.G., et al., 2024. Ecosystem service value assessment of the Yellow River Delta based on satellite remote sensing data. Land. 13(3), 276, doi: 10.3390/land13030276. |
| [39] | Lukas, P., Melesse, A.M., Kenea, T.T., 2025. Integrating land use/land cover and climate change projections to assess future hydrological responses: A CMIP6-based multi-scenario approach in the Omo Gibe River Basin, Ethiopia. Climate. 13(3), 51, doi: 10.3390/cli13030051. |
| [40] | Mekuria, W., Diyasa, M., Tengberg, A., et al., 2021. Effects of long-term land use and land cover changes on ecosystem service values: An example from the Central Rift Valley, Ethiopia. Land. 10(12), 1373, doi: 10.3390/land10121373. |
| [41] | Mensah, J.K., Ofosu, E.A., Akpoti, K., et al., 2022. Modeling current and future groundwater demands in the White Volta River Basin of Ghana under climate change and socio-economic scenarios. J. Hydrol.-Reg. Stud. 41, 101117, doi: 10.1016/j.ejrh.2022.101117. |
| [42] | Moges, A., Dibaba, A., Woldearegay, M., 2024. Anthropogenic effects and ecosystem services of tropical highland forests in Ethiopia. Glob. Ecol. Conserv. 55, e03237, doi: 10.1016/j.gecco.2024.e03237. |
| [43] | Mortey, E.M., Arnault, J., Inoussa, M.M., et al., 2024. Regional climate response to land cover change in tropical West Africa: a numerical sensitivity experiment with ESA land cover data and advanced WRF-Hydro. Front. Water. 6, 1372333, doi: 10.3389/frwa.2024.1372333. |
| [44] | Murray, L.T., Sidman, G., Grais, A., et al., 2017. Northern Ghana Land Use Environmental and Economic Valuation Study. Arlington: Winrock International. |
| [45] | Musetsho, K.D., Chitakira, M., Ramoelo, A., 2022. Ecosystem service valuation for a critical biodiversity area: Case of the Mphaphuli community, South Africa. Land. 11(10), 1696, doi: 10.3390/land11101696. |
| [46] | Mustapha, U.F., Akongyuure, D.N., Abagale, F.K., et al., 2016. Fish and fisheries of the Sisili-Kulpawn river basin in the Northern region, Ghana. Journal of Biodiversity and Environmental Sciences. 9, 112-119. |
| [47] |
Napogbong, L.A., Ahmed, A., Derbile, E.K., 2021. Fulani herders and indigenous strategies of climate change adaptation in Kpongu community, North-Western Ghana: implications for adaptation planning. Clim. Dev. 13(3), 201-214.
doi: 10.1080/17565529.2020.1746231 |
| [48] | Nasare, L.I., Opoku, S.A., Amponsah, A., et al., 2023. Effect of sand mining on riparian landcover transformation in Dallung-Kukou catchment of the White Volta Basin, Ghana. Heliyon. 9(8), e18428, doi: 10.1016/j.heliyon.2023.e18428. |
| [49] | Nsor, C.A., Ashiagbor, G., Danquah, E., 2019. Quantifying recent floodplain vegetation change along the White Volta River in the northern region of Ghana. Ghana Journal of Geography. 11(1), 159-179. |
| [50] |
Nyadzi, E., Bessah, E., Kranjac-Berisavljevic, G., et al., 2021. Hydro-climatic and land use/cover changes in the Nasia catchment of the White Volta Basin in Ghana. Theor. Appl. Climatol. 146(3-4), 1297-1314.
doi: 10.1007/s00704-021-03772-0 |
| [51] | Ocloo, M.D., Huang, X.F., Fan, M., et al., 2024. Study on the spatial changes in land use and landscape patterns and their effects on ecosystem services in Ghana, West Africa. Environ. Dev. 49, 100947, doi: 10.1016/j.envdev.2023.100947. |
| [52] | Peters, M.K., 2019. Assessing land use and land cover change in the Keta municipality of Ghana using remote sensing. MSc Thesis. Legon: University of Ghana. |
| [53] | Rahman, M.M., Szabó, G., 2021. Impact of land use and land cover changes on urban ecosystem service value in Dhaka, Bangladesh. Land. 10(8), 793, doi: 10.3390/land10080793. |
| [54] | Roshani, Sajjad, H., Rahaman, M.H., et al., 2024. Vulnerability assessment of forest ecosystem based on exposure, sensitivity, and adaptive capacity in the Valmiki Tiger Reserve, India: A geospatial analysis. Ecol. Inform. 80, 102494, doi: 10.1016/j.ecoinf.2024.102494. |
| [55] | Sati, V.P., 2024. Economic significance and environmental impacts of the Song Dam Drinking Water Project (SDDWP) in Garhwal Himalaya. Reg. Sustain. 5(2), 100145, doi: 10.1016/j.regsus.2024.100145. |
| [56] | Sharma, R., Rimal, B., Baral, H., et al., 2019. Impact of land cover change on ecosystem services in a tropical forested landscape. Resources. 8(1), 18, doi: 10.3390/resources8010018. |
| [57] | Sharma, S., Hussain, S., Singh, A.N., 2023. Impact of land use and land cover on urban ecosystem service value in Chandigarh, India: a GIS-based analysis. Journal of Urban Ecology. 9(1), 1-12. |
| [58] | Shiferaw, H., Bewket, W., Alamirew, T., et al., 2019. Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci. Total Environ. 675, 354-366. |
| [59] | Shiferaw, H., Alamirew, T., Kassawmar, T., et al., 2021. Evaluating ecosystem services values due to land use transformation in the Gojeb watershed, Southwest Ethiopia. Environ. Syst. Res. 10, 22, doi: 10.1186/s40068-021-00227-3. |
| [60] | Shrestha, B., Zhang, L.F., Sharma, S., et al., 2022. Effects on ecosystem services value due to land use and land cover change (1990-2020) in the transboundary Karnali River Basin, Central Himalayas. SN Appl. Sci. 4, 137, doi: 10.1007/s42452-022-05022-y. |
| [61] | Sisay, G., Gitima, G., Mersha, M., et al., 2021. Assessment of land use land cover dynamics and their drivers in Bechet Watershed, Upper Blue Nile Basin, Ethiopia. Remote Sens. Appl.-Soc. Environ. 24, 100648, doi: 10.1016/j.rsase.2021.100648. |
| [62] | Tahiru, A.A., Doke, D.A., Baatuuwie, B.N., 2020. Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Appl. Water Sci. 10, doi: 10.1007/s13201-020-01272-6. |
| [63] |
Tan, K.C., Lim, H.S., MatJafri, M.Z., et al., 2010. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ. Earth Sci. 60(7), 1509-1521.
doi: 10.1007/s12665-009-0286-z |
| [64] | Tengapoe, K., Baddianaah, I., Agyemang, I., 2023. Anthropogenic induced land use land cover dynamics of the Black Volta River Corridor in north-western Ghana, 2011-2021. Trees For. People. 14, 100449, doi: 10.1016/j.tfp.2023.100449. |
| [65] | Tesfay, F., Tadesse, S.A., Getahun, Y.S., et al., 2023. Evaluating the impact of land use and land cover changes on the values of ecosystem services in the Chacha Watershed, Ethiopia’s central highland. Environ. Sustain. Indic. 18, 100256, doi: 10.1016/j.indic.2023.100256. |
| [66] | Wang, P.J., Wang, J.W., Zhang, J.H., et al., 2022. Spatial-temporal changes in ecosystem services and social-ecological drivers in a typical coastal tourism city: A case study of Sanya, China. Ecol. Indic. 145, 109607, doi: 10.1016/j.ecolind.2022.109607. |
| [67] | Wei, H.J., Zheng, J.X., Xue, D., et al., 2022. Identifying the relationship between livelihoods and land ecosystem services using a coupled model: A case study in the “One River and Two Tributaries” region of Tibet. Land. 11(9), 1377, doi: 10.3390/land11091377. |
| [68] | Woldeyohannes, A., Cotter, M., Biru, W.D., et al., 2020. Assessing changes in ecosystem service values over 1985-2050 in response to land use and land cover dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land. 9(2), 37, doi: 10.3390/land9020037. |
| [69] | Zakari, O., Gyamfi, C., Boakye, E., et al., 2016. Spatio-Temporal Analysis of the Pattern of Land Cover Changes among the Sub-Basins in the White Volta Basin. [2024-11-17]. https://ssrn.com/abstract=4924819. |
| [70] |
Zhang, M.D., Ren, Y.T., Zhou, L., 2024. Spatiotemporal evolution characteristics and influencing factors of urban ecological resilience in the Yellow River Basin. Arid Land Geography. 47(3), 445-454 (in Chinese with English Abstract).
doi: 10.12118/j.issn.1000-6060.2023.381 |
| [1] | Purwantiningrum PURWANTININGRUM, Ernan RUSTIADI, Didit Okta PRIBADI. Mapping the spatial pattern of ecosystem services in the Jabodetabek Metropolitan Area, Indonesia: Could peri-urban areas support the urban core? [J]. Regional Sustainability, 2025, 6(6): 100276-. |
| [2] | FENG Xuyu, ZHAO Xiao, TONG Ling, WANG Sufen, DING Risheng, KANG Shaozhong. Impacts of land use and cover change on carbon storage: Multi-scenario projections in the arid region of Northwest China [J]. Regional Sustainability, 2025, 6(4): 100248-. |
| [3] | Abdul MALIK, Muhammad Ichsan ALI, Abdul Rasyid JALIL, Abdul MANNAN, Rahma MUSYAWARAH. Promoting sustainable mangrove tourism through payments for ecosystem services: Insights from Tongke-Tongke Village, South Sulawesi, Indonesia [J]. Regional Sustainability, 2025, 6(2): 100213-. |
| [4] | Wassie Abuhay ASCHENEFE, Temesgen Gashaw TAREKEGN, Betelhem Fetene ADMAS, Solomon Mulu TAFERE. Quantifying the impacts of land use/land cover changes on ecosystem service values in the upper Gilgel Abbay watershed, Ethiopia [J]. Regional Sustainability, 2025, 6(1): 100197-. |
| [5] | Jafarpour Ghalehteimouri KAMRAN, Che Ros FAIZAH, Rambat SHUIB. Application of Cellular Automata and Markov Chain model for urban green infrastructure in Kuala Lumpur, Malaysia [J]. Regional Sustainability, 2024, 5(4): 100179-. |
| [6] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
| [7] | WU Fan, LIANG Youjia, LIU Lijun, YIN Zhangcai, HUANG Jiejun. Identifying eco-functional zones on the Chinese Loess Plateau using ecosystem service bundles [J]. Regional Sustainability, 2023, 4(4): 425-440. |
| [8] | Sabir HUSSAIN, Sheenu SHARMA, Anand Narain SINGH. Evaluation of ecosystem supply services and calculation of economic value in Kargil District [J]. Regional Sustainability, 2022, 3(2): 157-169. |
| [9] | Mobeen Akhtar, Yuanyuan Zhao, Guanglei Gao, Qudsia Gulzar, Azfar Hussain, Abdus Samie. Assessment of ecosystem services value in response to prevailing and future land use/cover changes in Lahore, Pakistan [J]. Regional Sustainability, 2020, 1(1): 37-47. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
REGSUS Wechat
新公网安备 65010402001202号