Regional Sustainability ›› 2024, Vol. 5 ›› Issue (4): 100179.doi: 10.1016/j.regsus.2024.100179cstr: 32279.14.REGSUS.2024006
• Full Length Article • Previous Articles Next Articles
Jafarpour Ghalehteimouri KAMRAN*(), Che Ros FAIZAH, Rambat SHUIB
Received:
2024-02-25
Revised:
2024-09-03
Accepted:
2024-11-16
Published:
2024-12-30
Online:
2024-12-19
Contact:
Jafarpour Ghalehteimouri KAMRAN
E-mail:space.kamran@Gmail.com
Jafarpour Ghalehteimouri KAMRAN, Che Ros FAIZAH, Rambat SHUIB. Application of Cellular Automata and Markov Chain model for urban green infrastructure in Kuala Lumpur, Malaysia[J]. Regional Sustainability, 2024, 5(4): 100179.
Table 1
Identified land use and land cover (LULC) types of Kuala Lumpur."
No. | Type | Description |
---|---|---|
1 | Natural forest | The original forests remained in Kuala Lumpur. |
2 | Artificial forest | Trees that planted by human around buildings and houses. |
3 | Grassland | Football fields, parks, and empty lands with growing grasses. |
4 | Water body | Ponds, swamps, lakes, rivers, ditches, and lagoons. |
5 | Bare ground | Any open exposed lands without vegetation cover. |
6 | Built-up area | Residential areas, factories, apartments, roads, and constructions. |
Table 2
Transition matrix of pixel changes of different land use and land cover (LULC) types during 1990-2005."
Built-up area | Bare ground | Water body | Grassland | Artificial forest | Natural forest | |
---|---|---|---|---|---|---|
2427 | 6569 | 169 | 875 | 481 | 4435 | Natural forest |
10,364 | 15,739 | 1593 | 2372 | 9644 | 3019 | Artificial forest |
3273 | 4408 | 41 | 820 | 2026 | 490 | Grassland |
294 | 490 | 2451 | 84 | 618 | 116 | Water body |
41,206 | 30,282 | 364 | 3451 | 11,402 | 1718 | Bare ground |
66,886 | 28,679 | 47 | 1447 | 7440 | 325 | Built-up area |
Table 3
Transition matrix of probability changes of different LULC types during 1990-2005."
Built-up area | Bare ground | Water body | Grassland | Artificial forest | Natural forest | |
---|---|---|---|---|---|---|
0.1259 | 0.3406 | 0.0087 | 0.0454 | 0.2494 | 0.2299 | Natural forest |
0.2425 | 0.3683 | 0.0373 | 0.0555 | 0.2257 | 0.0706 | Artificial forest |
0.2960 | 0.3986 | 0.0037 | 0.0742 | 0.1832 | 0.0443 | Grassland |
0.0725 | 0.1210 | 0.6048 | 0.0207 | 0.1524 | 0.0286 | Water body |
0.4660 | 0.3425 | 0.0041 | 0.0390 | 0.1290 | 0.0194 | Bare ground |
0.6381 | 0.2736 | 0.0004 | 0.0138 | 0.0710 | 0.0031 | Built-up area |
Table 4
Transition matrix of pixel changes of different LULC types during 1990-2021."
Built-up area | Bare ground | Water body | Grassland | Artificial forest | Natural forest | |
---|---|---|---|---|---|---|
3698 | 2562 | 500 | 3322 | 4131 | 8058 | Natural forest |
9621 | 4632 | 2468 | 10,071 | 10,301 | 3973 | Artificial forest |
15,481 | 7370 | 1691 | 19,225 | 18,687 | 3939 | Grassland |
775 | 778 | 7513 | 1019 | 965 | 309 | Water body |
13,189 | 5191 | 1237 | 10,694 | 4886 | 675 | Bare ground |
49,304 | 14246 | 2459 | 22,473 | 4803 | 129 | Built-up area |
Table 5
Transition matrix of probability changes of different LULC types during 1990-2021."
Built-up area | Bare ground | Water body | Grassland | Artificial forest | Natural forest | |
---|---|---|---|---|---|---|
0.1660 | 0.1150 | 0.0225 | 0.1492 | 0.1855 | 0.3618 | Natural forest |
0.2343 | 0.1128 | 0.0601 | 0.2452 | 0.2508 | 0.0968 | Artificial forest |
0.2332 | 0.1110 | 0.0255 | 0.2896 | 0.2815 | 0.0593 | Grassland |
0.0683 | 0.0685 | 0.6614 | 0.0897 | 0.0849 | 0.0272 | Water body |
0.3677 | 0.1447 | 0.0345 | 0.2981 | 0.1362 | 0.0188 | Bare ground |
0.5278 | 0.1525 | 0.0263 | 0.2406 | 0.0514 | 0.0014 | Built-up area |
Table 6
Areas of LULC types in 1990, 2005, 2021, and 2050."
LULC type | 1990 | 2005 | 2021 | 2050 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Natural forest | 37.00 | 15.22 | 17.29 | 6.99 | 20.01 | 8.20 | 15.23 | 6.26 |
Artificial forest | 45.00 | 18.51 | 38.41 | 15.80 | 36.85 | 15.16 | 39.75 | 16.33 |
Grassland | 19.00 | 7.80 | 9.73 | 4.29 | 59.05 | 24.30 | 59.78 | 24.60 |
Water body | 2.00 | 0.86 | 3.57 | 1.46 | 10.12 | 4.16 | 13.88 | 5.71 |
Bare ground | 66.00 | 27.16 | 78.71 | 31.56 | 31.78 | 13.08 | 31.38 | 12.01 |
Built-up area | 73.00 | 30.45 | 95.50 | 39.90 | 85.44 | 35.10 | 83.28 | 35.09 |
Total | 243.00 | 100.00 | 243.00 | 100.00 | 243.00 | 100.00 | 243.00 | 100.00 |
[1] | Abdullah, S.A., Nakagoshi, N., 2007. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. For. Ecol. Manage. 241(1-3), 39-48. |
[2] | Agaton, M., Setiawan, Y., Effendi, H., 2016. Land use/land cover change detection in an urban watershed: A case study of upper Citarum Watershed, West Java Province, Indonesia. Procedia Environmental Sciences. 33, 654-660. |
[3] | Albert, C., Aronson, J., Fürst, C., et al., 2014. Integrating ecosystem services in landscape planning: Requirements, approaches, and impacts. Landsc. Ecol. 29, 1277-1285. |
[4] | Alonso-Sanz, R., Martin, M., 2007. Elementary Cellular Automata with elementary memory rules in cells: The case of linear rules. J. Cell. Autom. 1(1), 71-87. |
[5] | Assesment, M.E., 2005. Ecosystems and human well-being: Synthesis. Phys. Teach. 34(9), 534, doi: 10.1119/1.2344558. |
[6] | Austin, J., Johnson, D.D., Ho, J., et al., 2021. Structured Denoising Diffusion Models in Discrete Dtate-Spaces. Cambridge: Advances in Neural Information Processing Systems, 17981-17993. |
[7] | Ayompe, L.M., Schaafsma, M., Egoh, B.N., 2021. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J. Clean Prod. 278, 123914, doi: 10.1016/j.jclepro.2020.123914. |
[8] | Aziz, G., Minallah, N., Saeed, A., et al., 2024. Remote sensing-based forest cover classification using machine learning. Sci Rep. 14(1), 69, doi: 10.1038/s41598-023-50863-1. |
[9] |
Biswas, M., Banerji, S., Mitra, D., 2020. Land-use-land-cover change detection and application of Markov model: A case study of Eastern part of Kolkata. Environ. Dev. Sustain. 22(5), 4341-4360.
doi: 10.1007/s10668-019-00387-4 |
[10] | Campos, P.B.R., Almeida, C.M.D., Queiroz, A.P.D., 2022. Spatial dynamic models for assessing the impact of public policies: The case of Unified Educational Centers in the Periphery of São Paulo City. Land. 11(6), 922, doi: 10.3390/land11060922. |
[11] | Chaudhary, S., McGregor, A., Houston, D., et al., 2015. The evolution of ecosystem services: A time series and discourse-centered analysis. Environ. Sci. Policy. 54, 25-34. |
[12] | Chen, J., Li, H.Y., Luo, S.X., et al., 2024. Estimating changes in inequality of ecosystem services provided by green exposure: From a human health perspective. Sci. Total Environ. 908, 168265, doi: 10.1016/j.scitotenv.2023.168265. |
[13] | Chen, L.P., Sun, Y.J., Saeed, S., 2018. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS One. 13(7), e0200493, doi: 10.3390/su12093925. |
[14] | Clerici, N., Cote-Navarro, F., Escobedo, F.J., et al., 2019. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 685, 1181-1192. |
[15] | Congalton, R.G., 1991. Review of Stan Aronoff, Geographic Information Systems: A Management Perspective. Ottawa: WDL Publications, 37-38. |
[16] | Daily, G.C., Matson, P.A., 2008. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. U. S. A. 105(28), 9455-9456. |
[17] | De Groot, R.S., Alkemade, R., Braat, L., et al., 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7(3), 260-272. |
[18] | Desta, H., Fetene, A., 2020. Land-use and land-cover change in Lake Ziway watershed of the Ethiopian Central Rift Valley Region and its environmental impacts. Land Use Pol. 96, 104682, doi: 10.1016/j.landusepol.2020.104682. |
[19] | Dewan Bandaraya Kuala Lumpur, 2022. Planning Sector. [2024-01-27]. https://www.dbkl.gov.my/. |
[20] | Dong, M., Bryan, B.A., Connor, J.D., et al., 2015. Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. Ecosyst. Serv. 15, 63-74. |
[21] | Egoh, B., Rouget, M., Reyers, B., et al., 2007. Integrating ecosystem services into conservation assessments: a review. Ecol. Econ. 63(4), 714-721. |
[22] | Esmaeili, M., Abbasi-Moghadam, D., Sharifi, A., et al., 2023. ResMorCNN Model: Hyperspectral images classification using Residual-Injection Morphological Features and 3DCNN Layers. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. Remote Sens. 17, 219-243. |
[23] | Estrada-Carmona, N., Hart, A.K., DeClerck, F.A.J., et al., 2014. Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landsc. Urban Plan. 129, 1-11. |
[24] | FAO (Food and Agriculture Organization of the United Nations), 2021. Ecosystem Services & Biodiversity (ESB). [2024-01-08]. https://www.fao.org/ecosystem-services-biodiversity/news-events/news-details/en/c/1038435/. |
[25] | Fairbrass, A.J., Jones, K., McIntosh, A.L.S., et al., 2018. Green Infrastructure for London: A Review of the Evidence. London: The Engineering Exchange. |
[26] | Federal Territory of Kuala Lumpur, 2024. Department of Statistics, Malaysia. [2024-01-20]. https://www.dosm.gov.my/portal-main/release-content/demographic-statistics-first-quarter-2024. |
[27] | Gambo, J., Shafri, H.Z.M., Shaharum, N.S.N., et al., 2018. Monitoring and predicting land use-land cover (LULC) changes within and around Krau wildlife reserve (KWR) protected area in Malaysia using multi-temporal Landsat data. Geoplanning: Journal of Geomatics and Planning. 5(1), 17-34. |
[28] | Geneletti, D., Cortinovis, C., Zardo, L., et al., 2020. Planning for ecosystem services in cities. Cham: Springer, 87. |
[29] | Ghalehteimouri, K.J., Ros, F.B.C., 2020. The spatial turn in the National Physical Plan (NPP) Malaysia in compare to Germany for better criteria identification on climate change and environmental hazards issues. Climate Change. 6(21), 141-155. |
[30] | Ghalehteimouri, K.J., Ros, F.C., Rambat, S., et al., 2024. Spatial and temporal water pattern change detection through the Normalized Difference Water Index (NDWI) for initial flood assessment: A case study of Kuala Lumpur 1990 and 2021. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 114(1), 178-187. |
[31] | Ghalehteimouri, K.J., Shamsoddini, A., Mousavi, M.N., et al., 2022. Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019-2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges. 6, 100399, doi: 10.1016/j.envc.2021.100399. |
[32] | Grebík, J., Pikhurko, O., Tserunyan, A., 2023. Mini-workshop: Descriptive combinatorics, local algorithms and random processes. Oberwolfach Reports. 19(1), 429-455. |
[33] | Havinga, I., Marcos, D., Bogaart, P., et al., 2024. Understanding the sentiment associated with cultural ecosystem services using images and text from social media. Ecosyst. Serv. 65, 101581, doi: 10.1016/j.ecoser.2023.101581. |
[34] | He, H.X., Yan, J.N., Liang, D., et al., 2024. Time-series land cover change detection using deep learning-based temporal semantic segmentation. Remote Sens. Environ. 305, 114101, doi: 10.1016/j.rse.2024.114101. |
[35] | Hua, A.K., 2017. Application of CA-Markov model and land use/land cover changes in Malacca River Watershed, Malaysia. Appl. Ecol. Environ. Res. 15(4), 605-622. |
[36] | Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., et al., 2023. Assessment of spatiotemporal characteristic of droughts using in situ and remote sensing-based drought indices. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 16, 1483-1502. |
[37] | Johnson, M.J., Willsky, A.S., 2013. Bayesian nonparametric hidden semi-Markov models. J. Mach. Learn. Res. 14, 673-701. |
[38] | Jordan, S.J., Hayes, S.E., Yoskowitz, D., et al., 2010. Accounting for natural resources and environmental sustainability: Linking ecosystem services to human well-being. Environmental and Resource Economics. 44(5), 1530-1536. |
[39] | Kajosaari, A., Hasanzadeh, K., Fagerholm, N., 2024. Predicting context-sensitive urban green space quality to support urban green infrastructure planning. Landsc. Urban Plan. 242, 104952, doi: 10.1016/j.landurbplan.2023.104952. |
[40] | Kattenborn, T., Leitloff, J., Schiefer, F., et al., 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS-J. Photogramm. Remote Sens. 173, 24-49. |
[41] |
Keeley, M., Koburger, A., Dolowitz, D.P., et al., 2013. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manage. 51(6), 1093-1108.
doi: 10.1007/s00267-013-0032-x pmid: 23612718 |
[42] | Kopperoinen, L., Barton, D.N., Costadone, L., et al., 2022. Urban Experimental Ecosystem Accounting Pilot in Nordic cities. [2024-01-27]. https://pub.norden.org/temanord2022-557/. |
[43] | Kubiszewski, I., Costanza, R., Anderson, S., et al., 2017. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 26, 289-301. |
[44] | Kuenzer, C., Bluemel, A., Gebhardt, S., et al., 2011. Remote sensing of mangrove ecosystems: A review. Remote Sens. 3(5), 878-928. |
[45] | Lamarque, P., Quétier, F., Lavorel, S., 2011. The diversity of the ecosystem services concept and its implications for their assessment and management. C. R. Biol. 334(5-6), 441-449. |
[46] |
Lu, Y.T., Wu, P.H., Ma, X.S., et al., 2019. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata-Markov model. Environ. Monit. Assess. 191(2), 68, doi: 10.1007/s10661-019-7200-2.
pmid: 30644019 |
[47] | Maheng, D., Pathirana, A., Zevenbergen, C., 2021. A preliminary study on the impact of landscape pattern changes due to urbanization: Case study of Jakarta, Indonesia. Land. 10(2), 218, doi: 10.3390/land10020218. |
[48] | Malaysia Tourism Promotion Board, 2022. Tourism Malaysia. [2024-01-27]. https://www.tourism.gov.my/. |
[49] | Masi, F., Rizzo, A., Regelsberger, M., 2018. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manage. 216, 275-284. |
[50] | Mengist, W., Soromessa, T., Legese, G., 2020. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581, doi: 10.1016/j.scitotenv.2019.134581. |
[51] | Michelot, T., Klappstein, N.J., Potts, J.R., et al., 2024. Understanding step selection analysis through numerical integration. Methods Ecol. Evol. 15(1), 24-35. |
[52] | Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being. Washington: Island Press, 563. |
[53] | Mitchell, M.G.E., Schuster, R., Jacob, A.L., et al., 2021. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16(1), 014038, doi: 10.17605/OSF.IO/KTCXE. |
[54] | Moharrami, M., Attarchi, S., Gloaguen, R., et al., 2024. Integration of Sentinel-1 and Sentinel-2 data for ground truth sample migration for multi-temporal land cover mapping. Remote Sens. 16(9), 1566, doi: 10.3390/rs16091566. |
[55] | Monte, J., 1978. The impact of petroleum dredging on Louisiana’s coastal landscape: A plant biogeographical analysis and resource assessment of Spoil Bank Habitats in the Bayou Lafourche Delta. Louisiana: Louisiana State University and Agricultural & Mechanical College, 24-26. |
[56] | Morizet-Davis, J., Vidaurre, N.M.A., Reinmuth, E., et al., 2023. Ecosystem services at the farm level—overview, synergies, trade-offs, and stakeholder analysis. Glob. Chall. 7(7), 2200225, doi: 10.1002/gch2.202200225. |
[57] | Mountrakis, G., Heydari, S.S., 2023. Harvesting the Landsat archive for land cover land use classification using deep neural networks: Comparison with traditional classifiers and multi-sensor benefits. ISPRS-J. Photogramm. Remote Sens. 200, 106-119. |
[58] | Niya, A.K., Huang, J.L., Kazemzadeh-Zow, A., et al., 2019. An adding/deleting approach to improve land change modeling: A case study in Qeshm Island, Iran. Arab. J. Geosci. 12(11), 333, doi: 10.1007/s12517-019-4504-z. |
[59] | Ongsomwang, S., Pattanakiat, S., Srisuwan, A., 2019. Impact of land use and land cover change on ecosystem service values: A case study of Khon Kaen City, Thailand. Environment and Natural Resources Journal. 17(4), 43-58. |
[60] | Pham, V.D., Thiel, F., Frantz, D., et al., 2024. Learning the variations in annual spectral-temporal metrics to enhance the transferability of regression models for land cover fraction monitoring. Remote Sens. Environ. 308, 114206, doi: 10.1016/j.rse.2024.114206. |
[61] | Piralilou, S.T., Einali, G., Ghorbanzadeh, O., et al., 2022. A Google Earth Engine approach for wildfire susceptibility prediction fusion with remote sensing data of different spatial resolutions. Remote Sens. 14(3), 672, doi: 10.3390/rs14030672. |
[62] | Roy, S.K., Alam, M.T., Mojumder, P., et al., 2024. Dynamic assessment and prediction of land use alterations influence on ecosystem service value: A pathway to environmental sustainability. Environ. Sustain. Indic. 21, 100319, doi: 10.1016/j.indic.2023.100319. |
[63] | Schwab, K., Vanham, P., 2021. Stakeholder Capitalism: A Global Economy that Works for Progress, People and Planet. New Jersey: John Wiley & Sons, 147-167. |
[64] |
Seutin, G., Klein, N.K., Ricklefs, R.E., et al., 1994. Historical biogeography of the bananaquit (Coereba flaveola) in the Caribbean region: A mitochondrial DNA assessment. Evolution. 48(4), 1041-1061.
doi: 10.1111/j.1558-5646.1994.tb05292.x pmid: 28564451 |
[65] | Shehayeb, R., Ortlepp, R., Schanze, J., 2024. A drought and heat risk assessment framework for urban green infrastructure. Climate Resilience and Sustainability. 3(1), e63, doi: 10.1002/cli2.63. |
[66] | Suryawan, I.W.K., Mulyana, R., Septiariva, I.Y., et al., 2024. Smart urbanism, citizen-centric approaches and integrated environmental services in transit-oriented development in Jakarta, Indonesia. Research in Globalization. 8, 100181, doi: 10.1016/j.resglo.2023.100181. |
[67] | Talagrand, M., 2005. The Generic Chaining:Upper and Lower Bounds of Stochastic Processes. Heidelberg: Springer, 1-222. |
[68] | Tan, K.C., Lim, H.S., MatJafri, M.Z., et al., 2010. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ. Earth Sci. 60(7), 1509-1521. |
[69] | Tzoulas, K., Korpela, K., Venn, S., et al., 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81(3), 167-178. |
[70] | Uddin, K., Chaudhary, S., Chettri, N., et al., 2015. The changing land cover and fragmenting forest on the roof of the World: A case study in Nepal’s Kailash Sacred Landscape. Landsc. Urban Plan. 141, 1-10. |
[71] | Vali, A., Comai, S., Matteucci, M., 2020. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 12(15), 2495, doi: 10.3390/rs12152495. |
[72] | van Veller, M.G.P., Kornet, D.J., Zandee, M., 2000. Methods in vicariance biogeography: Assessment of the implementations of assumptions 0, 1, and 2. Cladistics-Int. J. Willi Hennig Soc. 16(3), 319-345. |
[73] | Wilmer, H., Taylor, J.B., Macon, D., et al., 2024. Loss of seasonal ranges reshapes transhumant adaptive capacity: Thirty-five years at the US Sheep Experiment Station. Agric. Human Values. 1-19. |
[74] | Yakir, B., 1994. Optimal detection of a change in distribution when the observations form a Markov chain with a finite state space. In: Carlstein, E., Müller, H.G., Siegmund, D., (eds). . Papers from the AMS-IMS-SIAM Summer Research Conference. Michigan: Institute of Mathematical Statistics, 346-358. |
[75] | Zadbagher, E., Becek, K., Berberoglu, S., 2018. Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environ. Monit. Assess. 190(8), 494, doi: 10.1007/s10661-018-6877-y. |
[1] | Gadir BAYRAMLI, Turan KARIMLI. Driving factors of CO2 emissions in South American countries: An application of Seemingly Unrelated Regression model [J]. Regional Sustainability, 2024, 5(4): 100182-. |
[2] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
[3] | Bubun MAHATA, Siba Sankar SAHU, Archishman SARDAR, Laxmikanta RANA, Mukul MAITY. Spatiotemporal dynamics of land use/land cover (LULC) changes and its impact on land surface temperature: A case study in New Town Kolkata, eastern India [J]. Regional Sustainability, 2024, 5(2): 100138-. |
[4] | Liton Chandra VOUMIK, Md. Hasanur RAHMAN, Md. Maznur RAHMAN, Mohammad RIDWAN, Salma AKTER, Asif RAIHAN. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[5] | LI Guoyi, LIU Jiahong, SHAO Weiwei. Urban flood risk assessment under rapid urbanization in Zhengzhou City, China [J]. Regional Sustainability, 2023, 4(3): 332-348. |
[6] | WANG Yuchan, GAO Genghe, NING Xiaoju, LI Yuanzheng, NIU Ning, GUO Yaqi. Willingness of returning migrant workers to purchase houses: A case study of 45 villages in Henan Province, China [J]. Regional Sustainability, 2022, 3(2): 133-145. |
[7] | Ahmed Mohammed Sayed MOHAMMED, Tetsuya UKAI, Michael HALL. Towards a sustainable campus-city relationship: A systematic review of the literature [J]. Regional Sustainability, 2022, 3(1): 53-67. |
[8] | Yanhua He, Yi Lin, Guohua Zhou, Yixuan Zhu, Kai Tang. Spatial pattern and drivers of urbanization in China’s mid-level developing urban agglomeration: A case study of Chang-Zhu-Tan [J]. Regional Sustainability, 2021, 2(1): 83-97. |
[9] | Yupeng Liu, Jiajia Li, Linlin Duan, Min Dai, Wei-qiang Chen. Material dependence of cities and implications for regional sustainability [J]. Regional Sustainability, 2020, 1(1): 31-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||