Regional Sustainability ›› 2024, Vol. 5 ›› Issue (4): 100182.doi: 10.1016/j.regsus.2024.100182cstr: 32279.14.REGSUS.2024009
• Full Length Article • Previous Articles Next Articles
Gadir BAYRAMLIa, Turan KARIMLIa,b,c,*()
Received:
2024-02-19
Revised:
2024-06-12
Accepted:
2024-11-14
Published:
2024-12-30
Online:
2024-12-19
Contact:
Turan KARIMLI
E-mail:turan.karimli@ogr.iu.edu.tr
Gadir BAYRAMLI, Turan KARIMLI. Driving factors of CO2 emissions in South American countries: An application of Seemingly Unrelated Regression model[J]. Regional Sustainability, 2024, 5(4): 100182.
Table 1
Description of the selected variables."
Variable | Unit | Description | Data sources |
---|---|---|---|
CO2 emissions | 103 t | The total amount of CO2 emissions | World Bank ( |
Gross domestic product (GDP) | USD | The total value of all final goods and services produced by a country or region in a given period of time | |
Renewable energy use | % | Percentage of the total final energy use | |
Urbanization | persons | Number of urban population | |
Industrialization | % | Industrial value added as a percentage of GDP | |
International tourism | persons | Number of tourist arrivals | |
Agricultural productivity | % | Agricultural value added as a percentage of GDP | |
Forest area | km2 | - |
Table 2
Descriptive statistics of the selected variables."
Variable | Mean | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|
CO2 emissions (×108 t) | 1.306 | 0.221 | 5.116 | 1.208 |
GDP (×1011 USD) | 5.130 | 0.663 | 36.300 | 7.720 |
Renewable energy use (%) | 25.475 | 7.650 | 50.050 | 11.982 |
Urbanization (×107 persons) | 4.470 | 0.761 | 18.900 | 5.130 |
Industrialization (%) | 31.244 | 18.189 | 53.089 | 7.759 |
International tourism (×107 persons) | 0.331 | 0.043 | 0.762 | 0.218 |
Agricultural productivity (%) | 6.283 | 3.275 | 15.405 | 2.126 |
Forest area (km2) | 1,083,250 | 124,335 | 5,510,886 | 1,683,224 |
Table 3
Correlation matrix of the error terms for the 7 South American countries."
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Model 1 | 1.000 | ||||||
Model 2 | -0.043 | 1.000 | |||||
Model 3 | -0.244 | 0.482 | 1.000 | ||||
Model 4 | -0.275 | 0.107 | -0.223 | 1.000 | |||
Model 5 | -0.159 | -0.481 | -0.237 | 0.554 | 1.000 | ||
Model 6 | -0.135 | 0.229 | 0.732 | -0.089 | 0.219 | 1.000 | |
Model 7 | 0.305 | -0.406 | 0.095 | -0.396 | 0.330 | 0.431 | 1.000 |
Breusch-Pagan Lagrange Multiplier test: Chi2(45)=340.781; P-value=0.000 |
Table 4
Variance inflation factor (VIF) statistic values of the independent variables."
Independent variable | VIF | 1/VIF | Mean VIF |
---|---|---|---|
GDP | 4.566 | 0.219 | 2.534 |
Renewable energy use | 3.215 | 0.311 | |
Urbanization | 2.841 | 0.352 | |
Industrialization | 2.212 | 0.452 | |
International tourism | 2.203 | 0.454 | |
Agricultural productivity | 1.531 | 0.653 | |
Forest area | 1.200 | 0.833 |
Table 5
Cross-dectional dependence test results of the selected variables."
Variable | Cross-sectional dependence test | P-value | Variable | Cross-sectional dependence test | P-value |
---|---|---|---|---|---|
CO2 emissions | 13.944 | 0.000 | Industrialization | 8.893 | 0.000 |
GDP | 11.891 | 0.000 | International tourism | 11.664 | 0.000 |
Renewable energy use | 11.092 | 0.000 | Agricultural productivity | 3.825 | 0.000 |
Urbanization | 20.613 | 0.000 | Forest area | 9.316 | 0.000 |
Table 6
Overall statistical significance of the 7 models."
Model | RMSE | R | Chi | P-value | Model | RMSE | R | Chi | P-value |
---|---|---|---|---|---|---|---|---|---|
Model 1 | 0.030 | 0.945 | 444.482 | 0.000 | Model 5 | 0.023 | 0.987 | 1847.552 | 0.000 |
Model 2 | 0.016 | 0.989 | 2180.511 | 0.000 | Model 6 | 0.025 | 0.991 | 3178.612 | 0.000 |
Model 3 | 0.056 | 0.933 | 337.414 | 0.000 | Model 7 | 0.054 | 0.949 | 524.887 | 0.000 |
Model 4 | 0.046 | 0.898 | 205.637 | 0.000 |
Table 7
Estimation result of the Seemingly Unrelated Regression (SUR) model for the 7 South American countries."
Country | Dependent variable | Independent variable | Coefficient | Z-value | P-value | |
---|---|---|---|---|---|---|
Argentina | CO2 emissions | GDP | 0.253 | 2.426 | 0.016 | |
Renewable energy use | -0.014 | -2.045 | 0.042 | |||
Urbanization | 0.009 | 1.741 | 0.089 | |||
Industrialization | 0.024 | 3.868 | 0.000 | |||
International tourism | 4.102 | 6.992 | 0.000 | |||
Agricultural productivity | 0.054 | 0.723 | 0.473 | |||
Forest area | -7.747 | -6.476 | 0.000 | |||
Constant | 10.505 | 7.026 | 0.000 | |||
Brazil | CO2 emissions | GDP | 0.002 | 2.354 | 0.018 | |
Renewable energy use | -0.033 | -18.612 | 0.000 | |||
Urbanization | 0.009 | 2.139 | 0.033 | |||
Industrialization | 0.007 | 1.151 | 0.252 | |||
International tourism | -0.480 | -2.850 | 0.039 | |||
Agricultural productivity | -0.082 | -1.762 | 0.078 | |||
Forest area | -6.413 | -5.474 | 0.000 | |||
Constant | 11.115 | 4.288 | 0.000 | |||
Chile | CO2 emissions | GDP | -0.003 | -0.832 | 0.404 | |
Renewable energy use | -0.017 | -2.039 | 0.042 | |||
Urbanization | 0.002 | 2.292 | 0.047 | |||
Industrialization | 0.099 | 2.320 | 0.020 | |||
International tourism | 1.643 | 2.911 | 0.037 | |||
Agricultural productivity | -0.117 | -2.961 | 0.034 | |||
Forest area | -6.312 | -1.893 | 0.059 | |||
Constant | -34.991 | -2.887 | 0.004 | |||
Colombia | CO2 emissions | GDP | 0.003 | 2.753 | 0.045 | |
Renewable energy use | -0.002 | -4.180 | 0.024 | |||
Urbanization | 0.025 | 3.533 | 0.000 | |||
Industrialization | 0.107 | 4.074 | 0.000 | |||
International tourism | 0.723 | 4.446 | 0.000 | |||
Agricultural productivity | -0.051 | -1.558 | 0.120 | |||
Forest area | -1.035 | -4.673 | 0.004 | |||
Constant | 0.816 | 0.281 | 0.779 | |||
Ecuador | CO2 emissions | GDP | -0.002 | -3.193 | 0.014 | |
Renewable energy use | -0.039 | -16.021 | 0.000 | |||
Urbanization | 0.003 | 1.669 | 0.097 | |||
Industrialization | 0.007 | 2.465 | 0.044 | |||
International tourism | 0.543 | 3.574 | 0.069 | |||
Agricultural productivity | -0.158 | -3.435 | 0.001 | |||
Forest area | -1.417 | -4.385 | 0.017 | |||
Constant | 16.593 | 0.289 | 0.778 | |||
Peru | CO2 emissions | GDP | -0.001 | -2.852 | 0.040 | |
Renewable energy use | -0.052 | -16.241 | 0.000 | |||
Urbanization | 0.004 | 2.267 | 0.021 | |||
Industrialization | 0.007 | 0.423 | 0.676 | |||
International tourism | 0.036 | 3.040 | 0.024 | |||
Agricultural productivity | -0.003 | -2.145 | 0.041 | |||
Forest area | -1.604 | -3.223 | 0.026 | |||
Constant | 34.584 | 0.386 | 0.765 | |||
Venezuela | CO2 emissions | GDP | 0.001 | 3.393 | 0.069 | |
Renewable energy use | -0.045 | -9.274 | 0.000 | |||
Urbanization | 0.002 | 3.557 | 0.058 | |||
Industrialization | 0.012 | 4.479 | 0.035 | |||
International tourism | 3.781 | 10.273 | 0.000 | |||
Agricultural productivity | 0.078 | 2.072 | 0.038 | |||
Forest area | -12.409 | -8.488 | 0.000 | |||
Constant | -24.935 | -8.834 | 0.000 |
Table 8
Estimation results of the SUR model for the independent variables."
Independent variable | Coefficient | Standard error | t-statistic | Independent variable | Coefficient | Standard error | t-statistic |
---|---|---|---|---|---|---|---|
Forest area | -5.277 | 0.568 | -9.284*** | Renewable energy use | -0.029 | 0.010 | -2.843*** |
International tourism | 1.401 | 0.151 | 9.309*** | Urbanization | 0.008 | 0.002 | 5.193*** |
Industrialization | 0.038 | 0.015 | 2.577*** | Agricultural productivity | -0.040 | 0.075 | -0.532 |
GDP | 0.036 | 0.015 | 2.385*** | Constant | 1.955 | 18.612 | 0.105 |
[1] | Akram, R., Chen, F.Z., Khalid, F., et al., 2020. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 247, 119122, doi: 10.1016/j.jclepro.2019.119122. |
[2] | Ali, H.S., Abdul-Rahim, A.S., Ribadu, M.B., 2017. Urbanization and carbon dioxide emissions in Singapore: Evidence from the ARDL approach. Environ. Sci. Pollut. Res. 24(2), 1967-1974. |
[3] | Apergis, N., Payne, J.E., 2015. Renewable energy, output, carbon dioxide emissions, and oil prices: Evidence from South America. Energy Source Part B. 10(3), 281-287. |
[4] | Arango, J., Ruden, A., Martinez-Baron, D., et al., 2020. Ambition meets reality: Achieving GHG emission reduction targets in the livestock sector of Latin America. Front. Sustain. Food Syst. 4, 65, doi: 10.3389/fsufs.2020.00065. |
[5] | Azam, M., Khan, A.Q., 2016. Urbanization and environmental degradation: Evidence from four SAARC Countries—Bangladesh, India, Pakistan, and Sri Lanka. Environ. Prog. Sustain. Energy. 35(3), 823-832. |
[6] | Ben Aïssa, M.S., Ben Jebli, M., Ben Youssef, S., 2014. Output, renewable energy consumption and trade in Africa. Energy Policy. 66, 11-18. |
[7] | Bersalli, G., Menanteau, P., El-Methni, J., 2020. Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renew. Sust. Energ. Rev. 133, 110351, doi: 10.1016/j.rser.2020.110351. |
[8] | Blomberg-Nygard, A., Anderson, C.K., 2016. United Nations World Tourism Organization study on online guest reviews and hotel classification systems: An integrated approach. Serv. Sci. 8(2), 139-151. |
[9] | Breusch, T.S., Pagan, A.R., 1980. The Lagrange multiplier test and its applications to model specification in econometrics. The Review of Economic Studies. 47(1), 239-253. |
[10] | Bulut, A.E., Acar Balaylar, N., Karimli, T., 2024. How does ownership structure affect the profitability of Turkish banks? A comparative analysis of determinants. Public Sector Economics. 48(3), 337-361. |
[11] | Cao, J.X., Zhang, J., Chen, Y., et al., 2023. Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. J. Clean. Prod. 426, 139207, doi: 10.1016/j.jclepro.2023.139207. |
[12] | CEPAL (Economic Commission for Latin America), 2023. National Environmental Profile. [2023-12-05]. https://statistics.cepal.org/portal/cepalstat/national-profile.html?theme=3&country=atg&lang=en. |
[13] | Congregado, E., Feria-Gallardo, J., Golpe, A.A., et al., 2016. The environmental Kuznets curve and CO2 emissions in the USA. Environ. Sci. Pollut. Res. 23(18), 18407-18420. |
[14] | Córdova, C., Zorio-Grima, A., Merello, P., 2018. Carbon emissions by South American companies: Driving factors for reporting decisions and emissions reduction. Sustainability. 10(7), 2411, doi: 10.3390/su10072411. |
[15] | de Groot, H.L.F.M., Withagen, C.A., Minliang, Z., 2001. Dynamics of China’s Regional Development and Pollution. Amsterdam: Tinbergen Institute, 1-36. |
[16] | Dogan, E., Seker, F., 2016. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sust. Energ. Rev. 60, 1074-1085. |
[17] | Dong, H.M., Xue, M.G., Xiao, Y.J., et al., 2021. Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. Sci. Total Environ. 758, 143688, doi: 10.1016/j.scitotenv.2020.143688. |
[18] | Du, Y.Y., Liu, H.B., Huang, H., et al., 2023. The carbon emission reduction effect of agricultural policy—Evidence from China. J. Clean Prod. 406, 137005, doi: 10.1016/j.jclepro.2023.137005. |
[19] | Elhorst, J.P., 2003. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 26(3), 244-268. |
[20] | FRED (Federal Reserve Economic Data), 2023. Latin America - Economic Data Series. [2023-12-05]. https://fred.stlouisfed.org/tags/series?t=latin+america. |
[21] | Guliyev, H., 2022. The effect of global financial markets and local shocks on Turkey airlines market; new evidence from structural break cointegration and causality tests. Research in Globalization. 5, 100096, doi: 10.1016/j.resglo.2022.100096. |
[22] | Howitt, O.J.A., Revol, V.G.N., Smith, I.J., et al., 2010. Carbon emissions from international cruise ship passengers’ travel to and from New Zealand. Energy Policy. 38(5), 2552-2560. |
[23] | Karimli, T., Mirzaliyev, N., Guliyev, H., 2024. The globalization and ecological footprint in European countries: Correlation or causation? Research in Globalization. 8, 100208, doi: 10.1016/j.resglo.2024.100208. |
[24] | Kazemzadeh, E., Fuinhas, J.A., Salehnia, N., et al., 2024. Factors driving CO2 emissions: The role of energy transition and brain drain. Environ. Dev. Sustain. 26(1), 1673-1700. |
[25] | Ke, S.F., Zhang, Z., Wang, Y.M., 2023. China’s forest carbon sinks and mitigation potential from carbon sequestration trading perspective. Ecol. Indic. 148, 110054, doi: 10.1016/j.ecolind.2023.110054. |
[26] | Khan, K., Su, C.W., 2021. Urbanization and carbon emissions: a panel threshold analysis. Environ. Sci. Pollut. Res. 28(20), 26073-26081. |
[27] | Koengkan, M., Fuinhas, J.A., Marques, A.C., 2018. Does financial openness increase environmental degradation? Fresh evidence from MERCOSUR countries. Environ. Sci. Pollut. Res. 25(30), 30508-30516. |
[28] | Koengkan, M., Losekann, L.D., Fuinhas, J.A., 2019. The relationship between economic growth, consumption of energy, and environmental degradation: Renewed evidence from Andean community nations. Environment Systems & Decisions. 39(1), 95-107. |
[29] | Koondhar, M.A., Tan, Z.X., Alam, G.M., et al., 2021. Bioenergy consumption, carbon emissions, and agricultural bioeconomic growth: A systematic approach to carbon neutrality in China. J. Environ. Manage. 296, 113242, doi: 10.1016/j.jenvman.2021.113242. |
[30] | Kumail, T., Ali, W., Sadiq, F., 2023. A step toward tourism development: do economic growth, energy consumption and carbon emissions matter? Evidence from Pakistan. Environ. Dev. Sustain. 25(5), 3985-4005. |
[31] | Lee, C.C., Chiu, Y.B., Sun, C.H., 2010. The environmental Kuznets curve hypothesis for water pollution: Do regions matter? Energy Policy. 38(1), 12-23. |
[32] | Li, M., Peng, J.Y., Lu, Z.X., et al., 2023. Research progress on carbon sources and sinks of farmland ecosystems. Resour. Environ. Sustain. 11, 100099, doi: 10.1016/j.resenv.2022.100099. |
[33] | Li, R.R., Wang, Q., Liu, Y., et al., 2021. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consump. 27, 1149-1164. |
[34] | Luo, Y.S., Long, X.L., Wu, C., et al., 2017. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 159, 220-228. |
[35] | Ma, D., Zhu, Y.J., 2024. The impact of economic uncertainty on carbon emission: Evidence from China. Renew. Sust. Energ. Rev. 191, 114230, doi: 10.1016/j.rser.2023.114230. |
[36] | Majeed, M.T., Tauqir, A., 2020. Effects of urbanization, industrialization, economic growth, energy consumption, financial development on carbon emissions: An extended STIRPAT model for heterogeneous income groups. Pakistan Journal of Commerce and Social Sciences. 14(3), 652-681. |
[37] | Mehmood, I., Bari, A., Irshad, S., et al., 2020. Carbon cycle in response to global warming. In: Fahad, S., Hasanuzzaman, M., Alam, M., et al., (eds.). Environment, Climate, Plant and Vegetation Growth. Cham: Springer Int. Publication, 1-15. |
[38] | Musah, M., Kong, Y.S., Mensah, I.A., et al., 2021. The connection between urbanization and carbon emissions: A panel evidence from West Africa. Environ. Dev. Sustain. 23(8), 11525-11552. |
[39] | Narayan, P.K., Saboori, B., Soleymani, A., 2016. Economic growth and carbon emissions. Econ. Model. 53, 388-397. |
[40] | Nasreen, S., Anwar, S., Ozturk, I., 2017. Financial stability, energy consumption and environmental quality: Evidence from South Asian economies. Renew. Sust. Energ. Rev. 67, 1105-1122. |
[41] | OECD (Organisation for Economic Co-operation and Development) , 2023. Reference Series Latin American Countries. [2024-01-16]. https://stats.oecd.org/Index.aspx?QueryId=33369. |
[42] | Pastore, L.M., Lo Basso, G., Cristiani, L., et al., 2022. Rising targets to 55% GHG emissions reduction—The smart energy systems approach for improving the Italian energy strategy. Energy. 259, 125049, doi: 10.1016/j.energy.2022.125049. |
[43] | Pesaran, M.H., Schuermann, T., Weiner, S.M., 2004. Modeling regional interdependencies using a global error-correcting macroeconometric model. J. Bus. Econ. Stat. 22(2), 129-162. |
[44] | Pesaran, M.H., Yamagata, T., 2008. Testing slope homogeneity in large panels. J. Econom. 142(1), 50-93. |
[45] | Raihan, A., Begum, R.A., Said, M.N.M., et al., 2019. A review of emission reduction potential and cost savings through forest carbon sequestration. Asian J. Water Environ. Pollut. 16(3), 1-7. |
[46] | Raihan, A., Muhtasim, D.A., Pavel, M.I., et al., 2022. Dynamic impacts of economic growth, renewable energy use, urbanization, and tourism on carbon dioxide emissions in Argentina. Environ. Process. 9(2), 38, doi: 10.1007/s40710-022-00590-y. |
[47] | Raihan, A., Tuspekova, A., 2022. Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: New evidence from Nepal. Energy Nexus. 7, 100113, doi: 10.1016/j.nexus.2022.100113. |
[48] | Rehman, A., Ma, H.Y., Ahmad, M., et al., 2021. Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol. Indic. 125, 107460, doi: 10.1016/j.ecolind.2021.107460. |
[49] | Saidi, K., Ben Mbarek, M., 2017. The impact of income, trade, urbanization, and financial development on CO2 emissions in 19 emerging economies. Environ. Sci. Pollut. Res. 24(14), 12748-12757. |
[50] | Saidi, K., Omri, A., 2020. The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environ. Res. 186, 109567, doi: 10.1016/j.envres.2020.109567. |
[51] | Schröder, E., Storm, S., 2020. Economic growth and carbon emissions: The road to “Hothouse Earth” is paved with good intentions. Int. J. Polit. Econ. 49(2), 153-173. |
[52] | Shahbaz, M., Lean, H.H., 2012. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy. 40, 473-479. |
[53] | Shahbaz, M., Uddin, G.S., Rehman, I.U., et al., 2014. Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renew. Sust. Energ. Rev. 31, 575-586. |
[54] | Shahbaz, M., Zakaria, M., Shahzad, S.J.H., et al., 2018. The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Econ. 71, 282-301. |
[55] | Sharif, A., Meo, M.S., Chowdhury, M.A.F., et al., 2021. Role of solar energy in reducing ecological footprints: An empirical analysis. J. Clean. Prod. 292, 126028, doi: 10.1016/j.jclepro.2021.126028. |
[56] | Silva, N., Fuinhas, J.A., Koengkan, M., et al., 2024. What are the causal conditions that lead to high or low environmental performance? A worldwide assessment. Environ. Impact Assess. Rev. 104, 107342, doi: 10.1016/j.eiar.2023.107342. |
[57] | Sohag, K., Taşkın, F.D., Malik, M.N., 2019. Green economic growth, cleaner energy and militarization: Evidence from Turkey. Resour. Policy. 63, 101407, doi: 10.1016/j.resourpol.2019.101407. |
[58] | Sohag, K., Chukavina, K., Samargandi, N., 2021. Renewable energy and total factor productivity in OECD member countries. J. Clean. Prod. 296, 126499, doi: 10.1016/j.jclepro.2021.126499. |
[59] | Solarin, S.A., 2014. Tourist arrivals and macroeconomic determinants of CO2 emissions in Malaysia. Anatolia. 25(2), 228-241. |
[60] | Sun, Y., Li, H., Andlib, Z., et al., 2022. How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques. Renewable Energy. 185, 996-1005. |
[61] | Tatoğlu, F.Y., 2012. Advanced Panel Data Analysis: Stata Applied. Istanbul: Beta, 142 (in Turkish). |
[62] | Tatoğlu, F.Y., Polat, B., 2021. Occurrence of turnig points on environmental Kuznets curve: Sharp breaks or smooth shifts? J. Clean. Prod. 317, 128333, doi: 10.1016/j.jclepro.2021.128333. |
[63] | Waheed, R., Chang, D.F., Sarwar, S., et al., 2018. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 172, 4231-4238. |
[64] | Wang, Q., Su, M., 2019. The effects of urbanization and industrialization on decoupling economic growth from carbon emission-A case study of China. Sust. Cities Soc. 51, 101758, doi: 10.1016/j.scs.2019.101758. |
[65] | Wang, Q., Zhang, F.Y., Li, R.R., 2024. Free trade and carbon emissions revisited: The asymmetric impacts of trade diversification and trade openness. Sustain. Dev. 32(1), 876-901. |
[66] | Wang, W.Z., Liu, L.C., Liao, H., et al., 2021. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy. 151, 112171, doi: 10.1016/j.enpol.2021.112171. |
[67] | World, Bank, 2023. World Development Indicators. [2024-01-13]. https://databank.worldbank.org/source/world-development-indicators. |
[68] | Xiong, L., Qi, S.Z., 2018. Financial development and carbon emissions in Chinese provinces: A spatial panel data analysis. Singap. Econ. Rev. 63(2), 447-464. |
[69] | Xu, B., Lin, B.Q., 2015. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 48, 188-202. |
[70] | Yoro, K.O., Daramola, M.O., 2020. CO2 emission sources, greenhouse gases, and the global warming effect. In: Rahimpour, M.R., Farsi, M., Makarem, M.A., (eds.). Advances in Carbon Capture. Cambridge: Woodhead Publishing, 3-28. |
[71] | Zafeiriou, E., Azam, M., 2017. CO2 emissions and economic performance in EU agriculture: Some evidence from Mediterranean countries. Ecol. Indic. 81, 104-114. |
[72] | Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American statistical Association. 57(298), 348-368. |
[1] | Jafarpour Ghalehteimouri KAMRAN, Che Ros FAIZAH, Rambat SHUIB. Application of Cellular Automata and Markov Chain model for urban green infrastructure in Kuala Lumpur, Malaysia [J]. Regional Sustainability, 2024, 5(4): 100179-. |
[2] | Bubun MAHATA, Siba Sankar SAHU, Archishman SARDAR, Laxmikanta RANA, Mukul MAITY. Spatiotemporal dynamics of land use/land cover (LULC) changes and its impact on land surface temperature: A case study in New Town Kolkata, eastern India [J]. Regional Sustainability, 2024, 5(2): 100138-. |
[3] | Liton Chandra VOUMIK, Md. Hasanur RAHMAN, Md. Maznur RAHMAN, Mohammad RIDWAN, Salma AKTER, Asif RAIHAN. Toward a sustainable future: Examining the interconnectedness among Foreign Direct Investment (FDI), urbanization, trade openness, economic growth, and energy usage in Australia [J]. Regional Sustainability, 2023, 4(4): 405-415. |
[4] | LI Guoyi, LIU Jiahong, SHAO Weiwei. Urban flood risk assessment under rapid urbanization in Zhengzhou City, China [J]. Regional Sustainability, 2023, 4(3): 332-348. |
[5] | LIU Wei, JIA Zhijie, DU Meng, DONG Zhanfeng, PAN Jieyu, LI Qinrui, PAN Linyan, Chris UMOLE. Influencing factors and contribution analysis of CO2 emissions originating from final energy consumption in Sichuan Province, China [J]. Regional Sustainability, 2022, 3(4): 356-372. |
[6] | WANG Yuchan, GAO Genghe, NING Xiaoju, LI Yuanzheng, NIU Ning, GUO Yaqi. Willingness of returning migrant workers to purchase houses: A case study of 45 villages in Henan Province, China [J]. Regional Sustainability, 2022, 3(2): 133-145. |
[7] | Ahmed Mohammed Sayed MOHAMMED, Tetsuya UKAI, Michael HALL. Towards a sustainable campus-city relationship: A systematic review of the literature [J]. Regional Sustainability, 2022, 3(1): 53-67. |
[8] | Yanhua He, Yi Lin, Guohua Zhou, Yixuan Zhu, Kai Tang. Spatial pattern and drivers of urbanization in China’s mid-level developing urban agglomeration: A case study of Chang-Zhu-Tan [J]. Regional Sustainability, 2021, 2(1): 83-97. |
[9] | Yupeng Liu, Jiajia Li, Linlin Duan, Min Dai, Wei-qiang Chen. Material dependence of cities and implications for regional sustainability [J]. Regional Sustainability, 2020, 1(1): 31-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||