Regional Sustainability ›› 2022, Vol. 3 ›› Issue (3): 223-232.doi: 10.1016/j.regsus.2022.10.001cstr: 32279.14.j.regsus.2022.10.001
• Full Length Article • Previous Articles Next Articles
ZHANG Shihanga,b, CHEN Yusena,c, LU Yongxinga,c, GUO Haoa,b, GUO Xinga,b, LIU Chaohongd, ZHOU Xiaobinga,*(), ZHANG Yuanminga,*()
Received:
2022-06-24
Revised:
2022-09-13
Accepted:
2022-10-07
Published:
2022-10-18
Online:
2022-11-29
Contact:
ZHOU Xiaobing, ZHANG Yuanming
E-mail:zhouxb@ms.xjb.ac.cn;zhangym@ms.xjb.ac.cn
About author:
First author contact:The first and second authors contributed equally to this work.
ZHANG Shihang, CHEN Yusen, LU Yongxing, GUO Hao, GUO Xing, LIU Chaohong, ZHOU Xiaobing, ZHANG Yuanming. Spatial variability and driving factors of soil multifunctionality in drylands of China[J]. Regional Sustainability, 2022, 3(3): 223-232.
Table 1
Correlations between eight soil functionality indicators and soil multifunctionality (SMF) index."
SOC | TN | C:N | TP | AK | AN | AP | AGB | SMF1 | SMF2 | |
---|---|---|---|---|---|---|---|---|---|---|
SMF1 | 0.857** | 0.791** | 0.554** | 0.588** | 0.147* | 0.764** | 0.496** | 0.373** | 1.000 | 0.850** |
SMF2 | 0.910** | 0.827** | 0.553** | 0.503** | 0.153* | 0.845** | 0.456** | 0.159* | 0.850*** | 1.000 |
Fig. 4.
Relationships between SMF and environmental factors (MAP (a), MAT (b), Sard (c), pH (d), EVI (e), and CEC (f)) at sites (n=54) with aridity<0.80 and sites (n=100) with aridity>0.80, as well as across all sites (n=154). Lines represent the results from the fitted linear ordinary least square (OLS) model. Shaded areas indicate 95% confidence intervals for regression lines. MAP, mean annual precipitation; MAT, mean annual temperature; Srad, solar radiation; EVI, enhanced vegetation index; CEC, cation exchange capacity."
Fig. 5.
Structural equation model (SEM) accounting for the hypothesized direct and indirect relationships among SMF, MAT, MAP, EVI, aridity, Srad, pH, CEC, and EVI. (a), sites (n=54) with aridity<0.80; (b), sites (n=100) with aridity>0.80. Note that we only present significant relationships (P<0.05) and their coefficients (values on the arrows) for graphical simplicity. The red and blue arrows indicate positive and negative relationships, respectively. The thickness of the arrow is proportional to the magnitude of standardized path coefficients and indicative of the strength of the relationship. * indicate the significance level of each coefficient: *, P<0.05 level; **, P<0.01 level; and ***, P<0.001 level. R2 is the proportion of variance explained by the model, and the value are shown on the box. Goodness-of-fit statistics for each SEM are given (df, degrees of freedom; RMSEA, root mean squared error of approximation; AIC, Akaike Information Criterion)."
Fig. 6.
Schematic representation of the geographically weighted regression coefficients of SMF with aridity (a), CEC (b), pH (c), Srad (d), EVI (e), and MAT (f). Note that the figures are based on the standard map (GS (2021)5453) of the Map Service System (http://bzdt.ch.mnr.gov.cn/), and the standard map had not been modified. The positive regression coefficients indicate that SMF is positively correlated with environmental factors, while the negative regression coefficients indicate that SMF is negatively correlated with environmental factors."
[1] |
Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., et al., 2018. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data. 5, 1701911, doi: 10.1038/sdata.2017.191.
doi: 10.1038/sdata.2017.191 |
[2] |
Berdugo, M., Kefi, S., Soliveres, S., et al., 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1(2), doi: 10.1038/s41559-016-0003.
doi: 10.1038/s41559-016-0003 |
[3] |
Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., et al., 2020. Global ecosystem thresholds driven by aridity. Science. 367(6479), 787-790.
doi: 10.1126/science.aay5958 pmid: 32054762 |
[4] | Brady, N.C., Weil, R.R., 1990. The nature and properties of soil (13th Edition). Agr. Ecosyst. Environ. 95, 393-396. |
[5] |
Byrnes, J.E.K., Gamfeldt, L., Isbell, F., et al., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods. Ecol. Evol. 5(2), 111-124.
doi: 10.1111/2041-210X.12143 |
[6] | Cai, Y., 2019. Relationship between desert plant diversity and ecosystem multifunctionality along water and salt gradients. Xinjiang University, Urumqi. |
[7] |
Chen, J., Xiao, G., Kuzyakov, Y., et al., 2017. Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosciences. 14(9), 2513-2525.
doi: 10.5194/bg-14-2513-2017 |
[8] |
Dai, Y., Shangguan, W., 2019. Dataset of soil properties for land surface modeling over China. National Tibetan Plateau Data Center. doi: 10.11888/Soil.tpdc.270281.
doi: 10.11888/Soil.tpdc.270281 |
[9] |
Dai, Z.M., Yu, M.J., Chen, H.H., et al., 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global. Change. Biol. 26(9), 5267-5276.
doi: 10.1111/gcb.15211 |
[10] | Davies, J., Barchiesi, S., Ogali, C.J., et al., 2016. Water in drylands: adapting to scarcity through integrated management. Gland, Switzerland: IUCN. |
[11] | Delgado-Baquerizo, M., Maestre, F.T., Gallardol, A., et al., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature. 502(7473), 671-673. |
[12] |
Ding, J.Y., Eldridge, D.J., 2021. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient. Catena. 201, doi: 10.1016/j.catena.2021.105233.
doi: 10.1016/j.catena.2021.105233 |
[13] |
Durán, J., Delgado-Baquerizo, M., Dougill, A.J., et al., 2018. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology. 99(5), 1184-1193.
doi: 10.1002/ecy.2199 pmid: 29484631 |
[14] |
Eldridge, D.J., Delgado-Baquerizo, M., Quero, J.L., et al., 2020. Surface indicators are correlated with soil multifunctionalit in global drylands. J. Appl. Ecol. 57(2), 424-435.
doi: 10.1111/1365-2664.13540 |
[15] |
Gamfeldt, L., Hillebrand, H., Jonsson, P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology. 89, 1223-1231.
pmid: 18543617 |
[16] |
Gross, N., Le, B.P., Liancourt, P., et al., 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1(5), doi: 10.1038/s41559-017-0132.
doi: 10.1038/s41559-017-0132 |
[17] |
Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. Nature. 451(7176), 293-296.
doi: 10.1038/nature06592 |
[18] |
Guerra, C.A., Heintz-Buschart, A., Sikorski, J., 2020. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1-13.
doi: 10.1038/s41467-019-13993-7 |
[19] |
Haddad, N.M., Crutsinger, G.M., Gross, K., et al. 2011. Plant diversity and the stability of food webs. Ecol. Lett. 14, 42-46.
doi: 10.1111/j.1461-0248.2010.01548.x pmid: 21070559 |
[20] |
Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature. 448, 188-190.
doi: 10.1038/nature05947 |
[21] |
Hooper, D.U., Vitousek, P.M., 2005. Effects of plant composition and diversity on nutrient cycling. Ecol Monogr. 68, 121-149.
doi: 10.1890/0012-9615(1998)068[0121:EOPCAD]2.0.CO;2 |
[22] |
He, N.P., Yu, Q., Wu, L., et al., 2008. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil. Biol. Biochem. 40, 2952-2959.
doi: 10.1016/j.soilbio.2008.08.018 |
[23] |
Hu, W.G., Ran, J.Z., Dong, L.W., et al., 2021. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nat. Commun. 12(1), doi: 10.1038/s41467-021-25641-0.
doi: 10.1038/s41467-021-25641-0 |
[24] |
Huang, J., Yu, H., Dai, A., et al., 2017. Drylands face potential threat under 2°C global warming target. Nat. Clim. Change. 7(6), 417-422.
doi: 10.1038/nclimate3275 |
[25] | Huang, C.Y., 2000. Soil Science. Beijing: China Agricultural Press. |
[26] |
Jim, C.Y., 1993. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ. Conserv. 20(1), 35-49.
doi: 10.1017/S0376892900037206 |
[27] |
Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10(2), 423-436.
doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 |
[28] |
Kemmitt, S.J., Wright, D., Goulding, K.W.T., et al., 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil. Biol. Biochem. 38, 898-911.
doi: 10.1016/j.soilbio.2005.08.006 |
[29] |
Kou, D., Ding, J.Z., Li., F., et al., 2019. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Sci. Total Environ. 650, 1795-1804.
doi: 10.1016/j.scitotenv.2018.09.252 |
[30] | Lan, J., Lei, X.D., He, X., et al., 2021. Multi-functionality of natural mixed broad-leaved forests and driving forces in Jilin Province. Acta Ecologica Sinica. 41, 5128-5141. (in Chinese) |
[31] | Leff, J.W., Jones, S.E., Prober, S.M., et al., 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA. 112(35), 10967-10972. |
[32] | Li, Y.Y., 2015. Effects of solar radiation on soil organic matter stability. MSc Thesis. Wuhan: Huazhong Agricultural University. (in Chinese) |
[33] |
Li, J.P., Zheng, Z.R., Zhao, N.X., et al., 2016. Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology. 40, 735-747. (in Chinese)
doi: 10.17521/cjpe.2015.0457 |
[34] |
Li, C. J., Fu, B.J., Wang, S., et al. 2021. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth. Env. 2, 858-873.
doi: 10.1038/s43017-021-00226-z |
[35] | Lin, X.B., Sun, Y.M., Jiang, X.F., 2020. Soil fertility characteristics and their influencing factors in tea plantations of Jiangxi Province, China. Chinese Journal of Applied Ecology. 31(4), 1163-1174. (in Chinese) |
[36] | Lv, Y.H., Zhan, S., Ma, W.J., et al., 2004. Influence of lime and serpentine-fused phosphate on tobacco production and soil acidity regulation. Ecology and Environmental Sciences. 13(3), 379-381. (in Chinese) |
[37] |
Manning, P., van der Plas, F., Soliveres, S., et al., 2018. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2(3), 427-436.
doi: 10.1038/s41559-017-0461-7 pmid: 29453352 |
[38] |
Milan, C., Jiri, D., Nikolai, E., et al., 2007. Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Glob. Ecol. Biogeogr. 16(5), 668-678.
doi: 10.1111/j.1466-8238.2007.00320.x |
[39] |
Miller, A.J., Amundson, R., Burke, I.C., 2004. The effect of climate and cultivation on soil organic C and N. Biogeochemistry. 67(1), 57-72.
doi: 10.1023/B:BIOG.0000015302.16640.a5 |
[40] |
Moyano, F.E., Manzoni, S., Chenu, C., 2013. Responses of soil heterotrophic respiration to moisture availability: an exploration of process and models. Soil Biol Bioche. 59, 72-85.
doi: 10.1016/j.soilbio.2013.01.002 |
[41] |
Nie, X.Q., Xiong, F., Yang, L.C., et al., 2017. Soil nitrogen storage, distribution, and associated controlling factors in the Northeast Tibetan Plateau shrublands. Forest. 8(11), 416, doi: 10.3390/f8110416.
doi: 10.3390/f8110416 |
[42] |
Palta, J.A., Nobel, P.S., 1989. Root respiration for Agave desert: influence of temperature, water status, and root age on daily patterns. J. Exp, Bot. 40, 181-186
doi: 10.1093/jxb/40.2.181 |
[43] |
Pau, S., Gillespie, T.W., Wolkovich, E.M., 2012. Dissecting EVI-species richness relationships in Hawaiian dry forests. J. Biogeogr. 39, 1678-1686.
doi: 10.1111/j.1365-2699.2012.02731.x |
[44] |
Post, W.M., Emanuel, W.R., Zinke, P.J., et al. 1982. Soil carbon pools and world life zones. Nature. 298(5870), 156-159.
doi: 10.1038/298156a0 |
[45] |
Pravalie, R., 2016. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 161, 259-278.
doi: 10.1016/j.earscirev.2016.08.003 |
[46] |
Rodell, M., Houser, P.R., Jambor, U., et al., 2004. The global land data assimilation system. B. Am. Meteorol. Soc. 85, 381-394.
doi: 10.1175/BAMS-85-3-381 |
[47] |
Rousk, J., Baath, E., Brookes, P.C., et al., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. Isme. J. 4(10), 1340-1351.
doi: 10.1038/ismej.2010.58 pmid: 20445636 |
[48] | Sharma, A., Weindorf, D.C., Wang, D.D., et al., 2015. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma. 239, 130-134. |
[49] |
Soliveres, S., Maestre, F.T., Eldridge, D.J., et al., 2014. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands. Global. Ecol. Biogeogr. 23(12), 1408-1416.
doi: 10.1111/geb.12215 |
[50] |
Tan, B., Wu, F.Z., Yang, W.Q., et al., 2011. Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology. 22(10), 2553-2559. (in Chinese)
pmid: 22263457 |
[51] |
Tian, H.Q., Wang, S.Q., Liu, J.Q., et al., 2006. Patterns of soil nitrogen storage in China. Global. Biogeochem. Cycles. 20(1), doi: 10.1029/2005GB002464.
doi: 10.1029/2005GB002464 |
[52] |
Tyler, G., 2003. Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behavior-contribution to debate. Folia Geobot. 38(4), 419-428.
doi: 10.1007/BF02803249 |
[53] |
Wang, C., Wang, X.B., Liu, D.W., et al., 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 5, doi: 10.1038/ncomms5799.
doi: 10.1038/ncomms5799 |
[54] |
Wang, C., Wang, S.A., Fu, B.J., et al., 2017. Precipitation gradient determines the tradeoff between soil moisture and soil organic carbon, total nitrogen, and species richness in the Loess Plateau, China. Sci. Total Environ. 575, 1538-1545.
doi: 10.1016/j.scitotenv.2016.10.047 |
[55] |
Wieder, W.R., Bonan, G.B., Allison, S.D., et al., 2013. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3(10), 909-912.
doi: 10.1038/nclimate1951 |
[56] | Xin, J., Yong, H., Wang, H.C., et al., 2014. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeo. Chemistry. 117, 39-54. |
[57] |
Yan, Z.Y., Zhang, Q., Buyantuev, A., et al., 2020. Plant functional beta diversity is an important mediator of effects of aridity on soil multifunctionality. Sci. Total Environ. 726, doi: 10.1016/j.scitotenv.2020.138529.
doi: 10.1016/j.scitotenv.2020.138529 |
[58] |
Zavaleta, E.S., Pasari, J.R., Hulvey, K.B., et al., 2010. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. P. Natl. Acad. Sci. USA. 107(4), 1443-1446.
doi: 10.1073/pnas.0906829107 |
[59] | Zhang, S.Q., Huang, S.M., Guo, D.D., 2011. The Correlations and prediction models of cation exchange capacity in three soils in Henan. Chinese Journal of Soil Science. 42(3), 627-631. (in Chinese) |
[60] | Zhang, K.R., Cheng, X.L., Dang, H.S., et al., 2020. Biomass: N: K: Ca: Mg: P ratios in forest stands world-wide: Biogeographical variations and environmental controls. Global Ecol. Biogeogr. 29, 2176-2189. |
[61] |
Zheng, Q., Hu, Y.T., Zhang, S.S., et al., 2019. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil. Biol. Biochem. 136, doi: 10.1016/j.soilbio.2019.107521.
doi: 10.1016/j.soilbio.2019.107521 |
[1] | SONG Boyi, ZHANG Shihang, LU Yongxing, GUO Hao, GUO Xing, WANG Mingming, ZHANG Yuanming, ZHOU Xiaobing, ZHUANG Weiwei. Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China [J]. Regional Sustainability, 2024, 5(3): 100162-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||