Regional Sustainability ›› 2022, Vol. 3 ›› Issue (3): 233-243.doi: 10.1016/j.regsus.2022.10.003cstr: 32279.14.j.regsus.2022.10.003
• Full Length Article • Previous Articles Next Articles
James NJUMWA*(), Ernest SAINA, Alfred SEREM
Received:
2022-06-10
Revised:
2022-09-12
Accepted:
2022-10-08
Published:
2022-10-18
Online:
2022-11-29
Contact:
James NJUMWA
E-mail:jamesnjumwa69@gmail.com
James NJUMWA, Ernest SAINA, Alfred SEREM. Nexus between selected macroeconomic variables and carbon emission in Kenya[J]. Regional Sustainability, 2022, 3(3): 233-243.
Table 1
Augmented Dickey-Fuller (ADF) test results of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | T statistic | P-value | Conclusion |
---|---|---|---|
Log(CO2 emission) | 1.337 | 0.9968 | At level |
Log(agricultural output) | -0.758 | 0.8311 | At level |
Log(foreign direct investment) | -5.183 | 0.0000*** | At level |
Log(inflation rate) | -3.815 | 0.0028*** | At level |
Log(trade openness) | -0.759 | 0.8310 | At level |
Table 2
Philips-Perron (PP) test results of CO2 emission, agricultural output, foreign direct investments, inflation rate, and trade openness."
Variable | T statistic | P-value | Conclusion |
---|---|---|---|
Log(CO2 emission) | 1.540 | 0.9977 | At level |
log(agricultural output) | -1.283 | 0.6371 | At level |
Log(foreign direct investment) | -5.237 | 0.0000*** | At level |
Log(inflation rate) | -3.921 | 0.0019*** | At level |
Log(trade openness) | -0.912 | 0.7840 | At level |
Table 3
ADF test results of the first differencing of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | T statistic | P-value | Conclusion |
---|---|---|---|
Differenced CO2 emission | -4.375 | 0.0003*** | At first difference |
Differenced agricultural output | -4.399 | 0.0003*** | At first difference |
Differenced foreign direct investment | -9.801 | 0.0000*** | At first difference |
Differenced inflation rate | -8.802 | 0.0000*** | At first difference |
Differenced trade openness | -5.669 | 0.0000*** | At first difference |
Table 4
PP test results of the first differencing of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | T statistic | P-value | Conclusion |
---|---|---|---|
Differenced CO2 emission | -4.298 | 0.0004*** | At first difference |
Differenced agricultural output | -4.400 | 0.0003*** | At first difference |
Differenced foreign direct investment | -16.387 | 0.0000*** | At first difference |
Differenced inflation rate | -9.268 | 0.0000*** | At first difference |
Differenced trade openness | -5.666 | 0.0000*** | At first difference |
Table 5
Summary of the first model of Zivot-Andrews allowing breaks in intercept of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | Observations# | Lags | T statistic | Break year |
---|---|---|---|---|
Differenced CO2 emission | 17 | 2 | -3.887 | 1999 |
Differenced agricultural output | 26 | 0 | -5.320*** | 2008 |
Differenced foreign direct investment | 32 | 2 | -8.790 | 2014 |
Differenced inflation rate | 21 | 1 | -8.342 | 2003 |
Differenced trade openness | 18 | 0 | -6.110 | 2000 |
Table 6
Summary of the second model of Zivot-Andrews allowing breaks in trend of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | Observations | Lags | T Statistics | Break year |
---|---|---|---|---|
Differenced CO2 emission | 10 | 2 | -3.659*** | 1992 |
Differenced agricultural output | 24 | 0 | -4.836* | 2006 |
Differenced foreign direct investment | 10 | 2 | -8.500 | 1992 |
Differenced inflation rate | 8 | 1 | -6.392 | 1990 |
Differenced trade openness | 9 | 0 | -5.948 | 1991 |
Table 7
Summary of the third model of Zivot-Andrews allowing breaks in both trend and intercept of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variables | Observations | Lags | T statistic | Break year |
---|---|---|---|---|
Differenced CO2 emission | 12 | 2 | -4.252 | 1994 |
Differenced agricultural output | 26 | 0 | -5.652 | 2008 |
Differenced foreign direct investment | 32 | 2 | -8.651 | 2014 |
Differenced inflation rate | 21 | 1 | -8.194 | 2003 |
Differenced trade openness | 13 | 0 | -6.221 | 1995 |
Table 8
Results of the optimal lag length of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Lags | LL | LR | df | P-value | FPE | AIC | HQIC | SBIC |
---|---|---|---|---|---|---|---|---|
0 | -65.4270 | 0.000 | 4.2680 | 4.3450 | 4.4950 | |||
1 | 40.8750 | 212.6000 | 25.000 | 0.000 | 3.6e-07* | -0.6591* | -0.2013* | 0.7014* |
2 | 58.8230 | 35.8960 | 25.000 | 0.073 | 0.000 | -0.2320 | 0.6080 | 2.2630 |
3 | 79.8280 | 42.0100 | 25.000 | 0.018 | 0.000 | 0.0100 | 1.2310 | 3.6380 |
4 | 111.6030 | 63.5500* | 25.000 | 0.000 | 0.000 | -0.4000 | 1.2020 | 4.3610 |
Table 9
Johansen’s multivariate co-integration test of CO2 emission, agricultural output, foreign direct investments, inflation rate, and trade openness."
Maximum rank | Observations | LL | Eigenvalue | Trace statistic | Critical value at the 5% significant level | Critical value at the 1% significant level |
---|---|---|---|---|---|---|
0 | 5 | -1.2066 | 101.4661 | 68.520 | 76.070 | |
1 | 14 | 21.0062 | 0.7089 | 57.0404 | 47.210 | 54.460 |
2 | 21 | 37.2473 | 0.5944 | 24.5583** | 29.680 | 35.650 |
3 | 26 | 46.1624 | 0.3906 | 6.7280 | 15.410 | 20.040 |
4 | 29 | 48.8353 | 0.1380 | 1. 3821 | 3.760 | 6.650 |
5 | 30 | 49.5264 | 0.0377 |
Table 10
Vector error-correction model (VECM) test results of the first differencing of CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness."
Variable | Lags | RMSE | R2 | Chi2 | P-value |
---|---|---|---|---|---|
Differenced ln(CO2 emission) | 2 | 0.1483 | 0.1879 | 7.8693 | 0.020** |
Differenced ln(agricultural output) | 2 | 0.0545 | 0.0241 | 0.8392 | 0.657 |
Differenced ln(foreign direct investment) | 2 | 1.1911 | 0.5580 | 42.9201 | 0.000*** |
Differenced ln(inflation rate) | 2 | 0.8451 | 0.0166 | 0.5724 | 0.751 |
Differenced ln(trade openness) | 2 | 0.1029 | 0.0242 | 0.8444 | 0.656 |
Table 11
Short-run relationship among the five differenced variables (CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness)."
Variable | Lags | Coefficient | Standard error | Z-test | P-value | 95% confidence interval | |
---|---|---|---|---|---|---|---|
Minimum value | Maximum value | ||||||
Differenced ln(CO2 emission) | 1 | -0.037 | 0.038 | -0.97 | 0.333 | -0.113 | 0.038 |
Differenced ln(agricultural output) | 1 | 0.012 | 0.014 | 0.82 | 0.413 | -0.016 | 0.039 |
Differenced ln(foreign direct investment) | 1 | -2.022 | 0.309 | -6.55 | 0.000*** | -2.627 | -1.417 |
Differenced ln(inflation rate) | 1 | 0.159 | 0.219 | 0.73 | 0.468 | -0.270 | 0.588 |
Differenced ln(trade openness) | 1 | 0.013 | 0.027 | 0.48 | 0.630 | -0.039 | 0.065 |
Table 12
Long-run relationships among the five differenced variables (CO2 emission, agricultural output, foreign direct investment, inflation rate, and trade openness)"
Variable | Coefficient | Standard error | Z-test | P-value | 95% confidence interval | |
---|---|---|---|---|---|---|
Minimum value | Maximum value | |||||
Differenced ln(CO2 emission) | 1.0000 | . | . | . | . | . |
Differenced ln(agricultural output) | -2.6712 | 0.7321 | -3.65 | 0.000*** | -4.106 | -1.236 |
Differenced ln(foreign direct investment) | 0.6064 | 0.0572 | 10.61 | 0.000*** | 0.494 | 0.718 |
Differenced ln(inflation rate) | -0.3183 | 0.1021 | -3.12 | 0.002*** | -0.518 | -0.118 |
Differenced ln(trade openness) | -1.8773 | 0.5504 | -3.41 | 0.001*** | -2.956 | -0.799 |
Constant (Y-intercept) | 18.7223 | . | . | . | . | . |
[1] | Agboola, M.O., Bekun, F.V., 2019. Does agricultural value added induce environmental degradation? Empirical evidence from an agrarian country. Environ. Sci. Pollut. Res. 26(27), 27660-27676. |
[2] | Agovino, M., Casaccia, M., Ciommi, M., 2019. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 105, 525-543. |
[3] |
Akintunde, E., 2017. Theories and concepts for human behavior in environmental preservation. Journal of Environmental Science and Public Health. 1(2), 120-133.
doi: 10.26502/jesph.96120012 |
[4] |
Al-Mulali, U., Tang, C.F., 2013. Investigating the validity of pollution haven hypothesis in the gulf cooperation council (GCC) countries. Energy Policy. 60, 813-819.
doi: 10.1016/j.enpol.2013.05.055 |
[5] |
Azam, M., Khan, A.Q., Abdullah, H.B., 2016. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies. Environ. Sci. Pollut. Res. 23(7), 6376-6389.
doi: 10.1007/s11356-015-5817-4 |
[6] |
Azarkamand, S., Wooldridge, C., Darbra, R.M., 2020. Review of initiatives and methodologies to reduce CO2 emission and climate change effects in ports. Int. J. Environ. Res. Public Health. 17(11), 3858, doi: 10.3390/ijerph17113858.
doi: 10.3390/ijerph17113858 |
[7] |
Badgley, C., Moghtader, J., Quintero, E., 2007. Organic agriculture and the global food supply. Renew. Agr. Food Syst. 22(2), 86-108.
doi: 10.1017/S1742170507001640 |
[8] |
Botetzagias, I., Tsagkari, M., Malesios, C., 2018. Is the ‘troika’ bad for the environment? An analysis of EU countries’ environmental performance in times of economic downturn and austerity memoranda. Ecol. Econ. 150, 34-51.
doi: 10.1016/j.ecolecon.2018.04.001 |
[9] |
Carson, R.T., 2010. The environmental Kuznets curve: seeking empirical regularity and theoretical structure. Rev. Env. Econ. Policy. 4(1), 3-23.
doi: 10.1093/reep/rep021 |
[10] | United States Agency for International Development (USAID), 2017. Greenhouse Gas (GHG) emissions factsheet: Kenya. [2021-08-12]. https://www.climatelinks.org/resources/greenhouse-gas-emissions-factsheet-kenya |
[11] |
Coakley, J., Fuertes, A.M., Smith, R., 2006. Unobserved heterogeneity in panel time series models. Comput. Stat. Data Anal. 50(9), 2361-2380.
doi: 10.1016/j.csda.2004.12.015 |
[12] |
Dinda, S., 2004. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ. 49(4), 431-455.
doi: 10.1016/j.ecolecon.2004.02.011 |
[13] |
Dinda, S., 2005. A theoretical basis for the environmental Kuznets curve. Ecol. Econ. 53(3), 403-413.
doi: 10.1016/j.ecolecon.2004.10.007 |
[14] | Dogan, E., Ozturk, I., 2017. The influence of renewable and non-renewable energy consumption and real income on CO2 emissions in the USA: evidence from structural break tests. Environ. Sci. Pollut. Res. 24(11), 10846-10854. |
[15] | Duku, C., Zwart, S.J., van Bussel, L.G., 2018. Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin. Sci. Total Environ. 610, 1581-1589. |
[16] | Erdogan, S., Solarin, S.A., 2021. Stochastic convergence in carbon emissions based on a new Fourier-based wavelet unit root test. Environ. Sci. Pollut. Res. 28(17), 21887-21899. |
[17] | Food and Agricultural Organization (FAO), 2020. Emissions Due to Agriculture. Global, Regional, and Country Trends 2000-2018. [2021-08-13]. http://www.fao.org/3/cb3808en/cb3808en.pdf. |
[18] |
Fiorino, D.J., 2011. Explaining national environmental performance: approaches, evidence, and implications. Policy Sci. 44(4), 367-389.
doi: 10.1007/s11077-011-9140-8 |
[19] | Gokmenoglu, K.K., Taspinar, N., 2018. Testing the agriculture induced EKC hypothesis: the case of Pakistan. Environ. Sci. Pollut. Res. 25(23), 22829-22841. |
[20] | Grossman, G.M., Krueger, A.B., 1991. Environmental Impacts of a North American Free Trade Agreement. [2021-09-13]. http://www.nber.org/papers/w3914. |
[21] | Hammond, A., 1995. Environmental Indicators: a Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development. Washington, DC: World Resources Institute, 17-18. |
[22] | Harrabin, R., 2020. “Top 10 tips for combating climate change revealed”. [2021-09-20]. http://www.bbc.com/news/science-environment-52719662. |
[23] |
Haseeb, M., Azam, M., 2021. Dynamic nexus among tourism, corruption, democracy, and environmental degradation: a panel data investigation. Environment, development, and sustainability. 23(4), 5557-5575.
doi: 10.1007/s10668-020-00832-9 |
[24] |
Islam, M.M., Alharthi, M., Murad, M.W., 2021. The effects of carbon emissions, rainfall, temperature, inflation, population, and unemployment on economic growth in Saudi Arabia: An ARDL investigation. PLoS One. 16(4), e0248743, doi: 10.1371/journal.pone.0248743.
doi: 10.1371/journal.pone.0248743 |
[25] | Japan International Cooperation Agency (JICA), 2002. Country Profile on Environment: Kenya. [2021-09-22]. http://hdl.handle.net/1834/779. |
[26] |
Johansen, S., 1988. Statistical analysis of co-integration vectors. J. Econ. Dyn. Control. 12(2-3), 231-254.
doi: 10.1016/0165-1889(88)90041-3 |
[27] | Johnson, J.A., Runge, C.F., Senauer, B., 2014. Global agriculture and carbon trade-offs. Proc. Natl. Acad. Sci. U. S. A. 111(34), 12342-12347. |
[28] |
Kaenchan, P., Puttanapong, N., Bowonthumrongchai, T., 2019. Macroeconomic modeling for assessing sustainability of bioethanol production in Thailand. Energy policy. 127, 361-373.
doi: 10.1016/j.enpol.2018.12.026 |
[29] |
Kaika, D., Zervas, E., 2013. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes, and the CO2 emissions case. Energy Policy. 62, 1392-1402.
doi: 10.1016/j.enpol.2013.07.131 |
[30] | Kastratović, R., 2019. Impact of foreign direct investment on greenhouse gas emissions in agriculture of developing countries. Aust. J. Agr. Resour. Econ. 63(3), 620-642. |
[31] | Government of the Republic of Kenya, 2018. Kenya Vision 2030 (Popular Version). [2021-09-22]. http://vision2030.go.ke/wp-content/uploads/2018/05/Vision-2030-Popular-Version.pdf. |
[32] |
Khan, M.K., Teng, J.Z., Khan, M.I., 2019. Impact of globalization, economic factors and energy consumption on CO2 emissions in Pakistan. Sci. Total Environ. 688, 424-436.
doi: 10.1016/j.scitotenv.2019.06.065 |
[33] | Kong’o, Y.O., Saina, E., Ng’eno, V., 2018. Is the Environmental Kuznets Curve Hypothesis Valid for Kenya? An Autoregressive Distributed Lag (ARDL) Approach. Africa International Journal of Multidisciplinary Research. 2 (3), 70-84. |
[34] |
Koshta, N., Bashir, H.A., Samad, T.A., 2020. Foreign trade, financial development, agriculture, energy consumption and CO2 emission: testing EKC among emerging economies. Indian Growth Dev. Rev. 14(1), 50-80.
doi: 10.1108/IGDR-10-2019-0117 |
[35] |
Kuyah, S., Whitney, C.W., Jonsson, M., 2019. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 39(5), 1-18.
doi: 10.1007/s13593-018-0550-2 |
[36] |
Lagat, P., Nyangena, J., 2018. The effects of climate variability on livestock production in Kenya. Journal of Agricultural Policy. 1(1), 58-79.
doi: 10.47941/jap.105 |
[37] | Lu, Z., Wei, Y., Xiao, H., 2015. Evolution of the human-water relationships in the Heihe River basin in the past 2000 years. Hydrol. Earth Syst. Sci. 19(5), 2261-2273. |
[38] |
Mahalik, M.K., Villanthenkodath, M.A., Mallick, H., 2021. Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India. Energy Policy. 149, 112015, doi: 10.1016/j.enpol.2020.112015.
doi: 10.1016/j.enpol.2020.112015 |
[39] | Ministry of Environment and Natural Resources, 2015. Kenya’s Intended Nationally Determined Contribution (INDC). Nairobi, Kenya: Government of the Republic of Kenya, 25. |
[40] | Francis, O.A., Maina, W.N., Maina, F.M.P., 2015. Youth engagement in agriculture in Kenya: Challenges and prospects. Journal of Culture, Society, and Development. 17, 3-19. |
[41] | Maziarz, M., 2015. A review of the Granger-causality fallacy. The journal of philosophical economics: Reflections on economic and social issues. 8(2), 86-105. |
[42] | McGahey, D., Davies, J., Hagelberg, N., 2014. Pastoralism and the Green Economy - a natural nexus? International Union for Conservation of Nature (IUCN) and United Nations Environment Programme. [2021-09-28]. https://www.unep.org/resources/report/pastoralism-and-green-economy-natural-nexus. |
[43] | Mwangi, E., 2012. Droughts in the GHA: a Case Study of the 2010/2011 Drought in Kenya. [2021-09-29]. http://www.gfdrr.org/sites/gfdrr/files/Kenya_PDNA_Final.pdf. |
[44] | Ndambiri, H.K., Ritho, C.N., Mbogoh, S.G., 2013. An evaluation of farmers' perceptions of and adaptation to the effects of climate change in Kenya. International Journal of Food and Agricultural Economics. 1(1), 75-96. |
[45] |
Nyberg, Y., Musee, C., Wachiye, E., 2020. Effects of agroforestry and other sustainable practices in the Kenya agricultural carbon project (KACP). Land. 9(10), 389, doi: 10.3390/land9100389.
doi: 10.3390/land9100389 |
[46] |
Özokcu, S., Özdemir, Ö., 2017. Economic growth, energy, and environmental Kuznets curve. Renew. Sust. Energ. Rev. 72, 639-647.
doi: 10.1016/j.rser.2017.01.059 |
[47] | Panagos, P., Standardi, G., Borrelli, P., 2018. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 29(3), 471-484. |
[48] | Parrique, T., Barth, J., Briens, F., 2019. Decoupling debunked. Evidence and arguments against green growth as a sole strategy for sustainability. [2021-09-30]. https://eeb.org/library/decoupling-debunked/. |
[49] |
Qureshi, M.I., Awan, U., Arshad, Z., 2016. Dynamic linkages among energy consumption, air pollution, and greenhouse gas emissions and agricultural production in Pakistan: sustainable agriculture key to policy success. Nat. Hazards. 84(1), 367-381.
doi: 10.1007/s11069-016-2423-9 |
[50] | Rahman, M. Z., 2013. Relationship between trade openness and carbon emission: a case of Bangladesh. Journal of Empirical Economics. 1(4), 126-134. |
[51] | Salkind, N.J., 2010. Encyclopedia of Research Design. Thousand Oaks: SAGE Publications. |
[52] |
Sarkodie, S.A., Strezov, V., 2019. Effect of foreign direct investments, economic development, and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 646, 862-871.
doi: 10.1016/j.scitotenv.2018.07.365 |
[53] |
Shahbaz, M., Mallick, H., Mahalik, M.K., 2016. The role of globalization on the recent evolution of energy demand in India: Implications for sustainable development. Energy Econ. 55, 52-68.
doi: 10.1016/j.eneco.2016.01.013 |
[54] | Siebert, M., 2018. Heterogeneity: what is it and why does it matter? [2021-09-30]. https://s4be.cochrane.org/blog/2018/11/29/what-is-heterogeneity/. |
[55] | Sinaga, O., Saudi, M.H.M., Roespinoedji, D., 2019. Environmental impact of biomass energy consumption on sustainable development: Evidence from ARDL bound testing approach. Ekoloji. 28(107), 443-452. |
[56] | Stern, D.I., 2018. The environmental Kuznets curves. In Companion to Environmental Studies. Routledge in association with GSE Research. 49(54), 49-54. |
[57] |
To, A.H., Ha, D.T., Nguyen, H.M., 2019. The Impact of foreign direct investment on environment degradation: evidence from emerging markets in Asia. Int. J. Environ. Res. Public Health. 16(9), 1636, doi: 10.3390/ijerph16091636.
doi: 10.3390/ijerph16091636 |
[58] | United Nations Environmental Programme (UNEP), 2011. Discussion Paper: Improving Public Participation in International Environmental Governance - UNEP Perspectives Issue No. 1. [2021-09-29]. http://hdl.handle.net/20.500.11822/9138. |
[59] | Velicer, W.F., Molenaar, P.C., 2013. Time series analysis for psychological research. In Schinka, J.A., Velicer, W.F., Weiner, I.B., (eds.). Handbook of Psychology. (2nd edition) Hoboken: John Wiley & Sons, incorporated publisher, 628-660. |
[60] | Vigren Skogseid, M., 2017. Climate Change in Kenya: a Review of Literature and Evaluation of Temperature and Precipitation Data. Student thesis series INES. [2021-08-29]. https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8918100&fileOId=8924136. |
[61] |
Wei, L., 2019. Towards economic decoupling? Mapping Chinese discourse on the China-US trade war. Chin. J. Int. Polit. 12(4), 519-556.
doi: 10.1093/cjip/poz017 |
[62] |
Willy, D.K., Muyanga, M., Jayne, T., 2019. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Pol. 81, 100-110.
doi: 10.1016/j.landusepol.2018.10.046 |
[63] | World Bank, 2019. Kenya Country Environmental Analysis. [2021-08-29]. https://openknowledge.worldbank.org/handle/10986/33949. |
[64] | World Bank, 2022a. World Bank Open Data. [2021-07-29]. https://data.worldbank.org/. |
[65] | World Bank, 2022b. Kenya CO2 emissions. Environment. [2022-09-27]. https://knoema.com/atlas/Kenya/CO2-emissions. |
[66] | Zarsky, L., 1999. Havens, halos, and spaghetti: untangling the evidence about foreign direct investment and the environment. Foreign direct Investment and the Environment. 13(8), 47-74. |
[67] | Zivot, E., Andrews, D.W.K., 1992. Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis. J. Bus. Econ. Stat. 10, 251-270. |
[1] | Dervis KIRIKKALELI, Emrah SOFUOĞLU, Kashif Raza ABBASI, Kwaku ADDAI. Economic complexity and environmental sustainability in eastern European economies: Evidence from novel Fourier approach [J]. Regional Sustainability, 2023, 4(4): 349-358. |
[2] | LIU Wei, JIA Zhijie, DU Meng, DONG Zhanfeng, PAN Jieyu, LI Qinrui, PAN Linyan, Chris UMOLE. Influencing factors and contribution analysis of CO2 emissions originating from final energy consumption in Sichuan Province, China [J]. Regional Sustainability, 2022, 3(4): 356-372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||