Regional Sustainability ›› 2024, Vol. 5 ›› Issue (4): 100183.doi: 10.1016/j.regsus.2024.100183cstr: 32279.14.REGSUS.2024010
• Full Length Article • Previous Articles
Muhammad RENDANAa,b, Wan Mohd Razi IDRISc,*(), Febrinasti ALIAd, Supli Effendi RAHIMe, Muhammad YAMINf, Muhammad IZZUDINg
Received:
2024-05-29
Revised:
2024-10-02
Accepted:
2024-11-22
Published:
2024-12-30
Online:
2024-12-19
Contact:
Wan Mohd Razi IDRIS
E-mail:razi@ukm.edu.my
Muhammad RENDANA, Wan Mohd Razi IDRIS, Febrinasti ALIA, Supli Effendi RAHIM, Muhammad YAMIN, Muhammad IZZUDIN. Relationship between drought and soil erosion based on the normalized differential water index (NDWI) and revised universal soil loss equation (RUSLE) model[J]. Regional Sustainability, 2024, 5(4): 100183.
Table 1
Data used for estimating soil erosion and drought in this study."
Data type | Raw data | Time | Source of data | Preprocessing step |
---|---|---|---|---|
Rainfall | Climate parameter | November 2021 | Department of Meteorology, Malaysia | Using Excel to tab delimited format conversion |
Elevation | SRTM DEM | November 2021 | USGS Earth Explorer | Reprojected coordinate system and clipping the AOI |
Soil type | Soil classification | November 2021 | Department of Irrigation and Drainage, Malaysia | Attribute table entry for soil characteristic |
Slope | SRTM DEM | November 2021 | USGS Earth Explorer | Reprojected coordinate system and clipping the AOI |
NDWI | Landsat 8 OLI | November 2021 | USGS Earth Explorer | Atmospheric correction and clipping the AOI |
Land cover | Landsat 8 OLI | November 2021 | USGS Earth Explorer | Atmospheric correction and clipping the AOI |
Table 2
Value of soil erodibility (K) factor for various soil series in the study area."
Soil series | Soil classification | Value of K factor (t•hm2•h/(hm2•MJ•mm)) | Soil series | Soil classification | Value of K factor (t•hm2•h/(hm2•MJ•mm)) |
---|---|---|---|---|---|
Serdang-Kedah | Acrisols | 0.036 | Selangor-Kangkong | Dystric cambisols | 0.051 |
Serdang-Bungor-Munchong | Acrisols | 0.038 | Telemong-Akob-Local alluvium | Dystric cambisols | 0.051 |
Munchong-Serembang | Plinthic acrisols | 0.039 | Peat | Histosols | 0.040 |
Prang | Ferrasols | 0.040 | Urban land | 0.042 | |
Rengam-Jerangau | Acrisols | 0.043 | Steep land | 0.042 | |
Gajah Mati-Munchong-Malacca | Ferric acrisols | 0.051 | Mined land | 0.042 | |
Kranji | Thionic gleysols | 0.051 |
[1] | Abdelaal, K., AlKahtani, M., Attia, K., et al., 2021. The role of plant growth-promoting bacteria in alleviating the adverse effects of drought on plants. Biology-Basel. 10(6), 520, doi: 10.3390/biology10060520. |
[2] | Abdelsamie, E.A., Abdellatif, M.A., Hassan, F.O., et al., 2023. Integration of RUSLE model, remote sensing and GIS techniques for assessing soil erosion hazards in arid zones. Agriculture-Basel. 13(1), 35, doi: 10.3390/agriculture13010035. |
[3] | Abidin, R.Z., Sulaiman, M.S., Yusoff, N., 2017. Erosion risk assessment: A case study of the Langat River bank in Malaysia. Int. Soil Water Conserv. Res. 5(1), 26-35. |
[4] | Alewell, C., Borrelli, P., Meusburger, K., et al., 2019. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 7(3), 203-225. |
[5] | Ali, M.I., Dirawan, G.D., Hasim, A.H., et al., 2019. Detection of changes in surface water bodies urban area with NDWI and MNDWI methods. International Journal on Advanced Science, Engineering and Information Technology. 9(3), 946-951. |
[6] | Alisjahbana, A.S., Hoi, D.L.J., 2021. Ready for the Dry Years: Building Resilience to Drought in South-East Asia (2nd ed.). [2024-04-15]. https://www.unescap.org/publications/ready-dry-years-building-resilience-drought-south-east-asia-2nd-edition. |
[7] | Anees, M.T., Abdullah, K., Nawawi, M.N.M., et al., 2018. Soil erosion analysis by RUSLE and sediment yield models using remote sensing and GIS in Kelantan state, Peninsular Malaysia. Soil Res. 56(4), 356-372. |
[8] | Atiem, I.A., Siddig, M.S.A., Hamukwaya, S.L., et al., 2022. Assessment of seasonal rainfall drought indices, Nyala City Sudan. Agriculture-Basel. 12(7), 1069, doi: 10.3390/agriculture12071069. |
[9] | Baiamonte, G., Minacapilli, M., Novara, A., et al., 2019. Time scale effects and interactions of rainfall erosivity and cover management factors on vineyard soil loss erosion in the semi-arid area of southern Sicily. Water. 11(5), 978, doi: 10.3390/w11050978. |
[10] | Behera, D.K., Jamal, S., Ahmad, W.S., et al., 2023. Estimation of soil erosion using RUSLE Model and GIS tools: A study of Chilika Lake, Odisha. J. Geol. Soc. India. 99(3), 406-414. |
[11] | Bekin, N., Prois, Y., Laronne, J.B., et al., 2021. The fuzzy effect of soil conservation practices on runoff and sediment yield from agricultural lands at the catchment scale. CATENA. 207, 105710, doi: 10.1016/j.catena.2021.105710. |
[12] |
Berberoglu, S., Cilek, A., Kirkby, M., et al., 2020. Spatial and temporal evaluation of soil erosion in Turkey under climate change scenarios using the Pan-European Soil Erosion Risk Assessment (PESERA) model. Environ. Monit. Assess. 192(8), 491, doi: 10.1007/s10661-020-08429-5.
pmid: 32638113 |
[13] | Bhaga, T.D., Dube, T., Shoko, C., 2021. Satellite monitoring of surface water variability in the drought prone Western Cape, South Africa. Phys. Chem. Earth. 124, 102914, doi: 10.1016/j.pce.2020.102914. |
[14] | Borrelli, P., Panagos, P., 2020. An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land Use Policy. 92, 1-8. |
[15] | Chen, H., Zhang, X.P., Abla, M., et al., 2018. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. CATENA. 170, 141-149. |
[16] | Chinnasamy, P., Honap, V.U., Maske, A.B., 2020. Impact of 2018 Kerala floods on soil erosion: Need for post-disaster soil management. J. Indian Soc. Remote Sens. 48(10), 1373-1388. |
[17] | Cui, A.H., Li, J.F., Zhou, Q.M., et al., 2021. Use of a multiscalar GRACE-based standardized terrestrial water storage index for assessing global hydrological droughts. J. Hydrol. 603, 126871, doi: 10.1016/j.jhydrol.2021.126871. |
[18] | DID 2011. Review of the National Water Resources Study (2000-2050) and Formulation of National Water Resources Policy. [2024-04-15]. https://library.water.gov.my/cgi-bin/koha/opac-detail.pl?biblionumber=20557. |
[19] | Elfithri, R., Mokhtar, M., Abdullah, M.P., et al., 2018. Watershed sustainability index for Langat UNESCO HELP River Basin, Malaysia. International Journal of Engineering & Technology. 7(3.14), 187-190. |
[20] | FAO (Food and Agriculture Organization), 1979. A Provisional Methodology of Soil Degradation Assessment. Rome: FAO. |
[21] | Felde, V.J.M.N.L., Schweizer, S.A., Biesgen, D., et al., 2021. Wet sieving versus dry crushing: Soil microaggregates reveal different physical structure, bacterial diversity and organic matter composition in a clay gradient. Eur. J. Soil Sci. 72(2), 810-828. |
[22] | Fung, K.F., Huang, Y.F., Koo, C.H., et al., 2020. Improved SVR machine learning models for agricultural drought prediction at downstream of Langat River Basin, Malaysia. J. Water Clim. Chang. 11(4), 1383-1398. |
[23] | Girmay, G., Moges, A., Muluneh, A., 2020. Estimation of soil loss rate using the USLE model for Agewmariayam Watershed, northern Ethiopia. Agriculture & Food Security. 9, 9, doi: 10.1186/s40066-020-00262-w. |
[24] | Gorgij, A.D., Alizamir, M., Kisi, O., et al., 2022. Drought modelling by standard precipitation index (SPI) in a semi-arid climate using deep learning method: Long short-term memory. Neural Comput. Appl. 34(3), 2425-2442. |
[25] | Haque, M.Z., Reza, M.I.H., Abd Rahim, S., et al., 2022. Assessing the effectiveness of hydromulching as a rapid soil erosion control measure: A study in Langat Sub Basin, Peninsular Malaysia. Int. J. Conserv. Sci. 13(2), 679-694. |
[26] | Hendrawan, V.S.A., Komori, D., Kim, W., 2023. Possible factors determining global-scale patterns of crop yield sensitivity to drought. PLoS One. 18(2), e0281287, doi: 10.1371/journal.pone.0281287. |
[27] | Herawati, A., Syamsiyah, J., Baldan, S.K., et al., 2021. Application of soil amendments as a strategy for water holding capacity in sandy soils. IOP Conference Series: Earth and Environmental Science. 724(1), 012014, doi: 10.1088/1755-1315/724/1/012014. |
[28] | Hussain, A., Jadoon, K.Z., Rahman, K.U., et al., 2023. Analyzing the impact of drought on agriculture: Evidence from Pakistan using standardized precipitation evapotranspiration index. Nat. Hazards. 115(1), 389-408. |
[29] | Islam, M.R., Jaafar, W.Z.W., Hin, L.S., et al., 2020. Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE. Appl. Water Sci. 10(7), 165, doi: 10.1007/s13201-020-01185-4. |
[30] | Kane, D.A., Bradford, M.A., Fuller, E., et al., 2021. Soil organic matter protects US maize yields and lowers crop insurance payouts under drought. Environ. Res. Lett. 16(4), 044018, doi: 10.1088/1748-9326/abe492. |
[31] | Karbasi, M., Karbasi, M., Jamei, M., et al., 2022. Development of a new wavelet-based hybrid model to forecast multi-scalar SPEI drought index (case study: Zanjan city, Iran). Theor. Appl. Climatol. 147(1-2), 499-522. |
[32] | Kogo, B.K., Kumar, L., Koech, R., 2020. Impact of land use/cover changes on soil erosion in western Kenya. Sustainability. 12(22), 9740, doi: 10.3390/su12229740. |
[33] | Koirala, P., Thakuri, S., Joshi, S., et al., 2019. Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences. 9(4), 147, doi: 10.3390/geosciences9040147. |
[34] |
Liu, C.H., Yang, C.P., Yang, Q., et al., 2021. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 11(1), 1280, doi: 10.1038/s41598-020-80527-3.
pmid: 33446853 |
[35] | Masroor, M., Sajjad, H., Rehman, S., et al., 2022. Analysing the relationship between drought and soil erosion using vegetation health index and RUSLE models in Godavari middle sub-basin, India. Geosci. Front. 13(2), 101312, doi: 10.1016/j.gsf.2021.101312. |
[36] | McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425-1432. |
[37] | Morgan, R.P.C., 2005. Soil Erosion and Conservation (3rd ed.). Melbourne: Blackwell Publishing Company. |
[38] | Mullapudi, A., Vibhute, A.D., Mali, S., et al., 2023. A review of agricultural drought assessment with remote sensing data: Methods, issues, challenges and opportunities. Appl. Geomat. 15(1), 1-13. |
[39] | Muñoz, A.A., Klock-Barría, K., Alvarez-Garreton, C., et al., 2020. Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water, 12(3), 1-17. |
[40] | Obaid, H.A., Shahid, S., 2017. Soil erosion susceptibility of Johor River basin. Water Environ. J. 31(3), 367-374. |
[41] | Obiahu, O.H., Elias, E., 2020. Effect of land use land cover changes on the rate of soil erosion in the Upper Eyiohia river catchment of Afikpo North Area, Nigeria. Environmental Challenges. 1, 100002, doi: 10.1016/j.envc.2020.100002. |
[42] | Pandey, A., Chowdary, V.M., Mal, B.C., 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour. Manag. 21(4), 729-746. |
[43] | Paredes-Trejo, F., Barbosa, H.A., Daldegan, G.A., et al., 2023. Impact of drought on land productivity and degradation in the Brazilian semiarid region. Land. 12(5), 954, doi: 10.3390/land12050954. |
[44] | Park, C.K., Kam, J., Byun, H.R., et al., 2022. A self-calibrating effective drought index (scEDI): Evaluation against social drought impact records over the Korean Peninsula (1777-2020). J. Hydrol. 613, 128357, doi: 10.1016/j.jhydrol.2022.128357. |
[45] | Patil, P., Jagtap, M., Dakhore, K., 2024. Drought severity estimation using NDWI index in Parbhani district of Maharashtra. J. Agrometeorol. 26(2), 225-227. |
[46] | Pham, T.G., Degener, J., Kappas, M., 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int. Soil Water Conserv. Res. 6(2), 99-110. |
[47] | Qiu, J.L., Shen, Z.Y., Leng, G.Y., et al., 2021. Synergistic effect of drought and rainfall events of different patterns on watershed systems. Sci. Rep. 11(1), 18957, doi: 10.1038/s41598-021-97574-z. |
[48] | Renard, K.G., Foster, G.R., Weesies, D.K., et al., 1997. Predicting Soil Erosion by Water:A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Washington:U.S. Government Publishing Office. |
[49] | Rendana, M., Rahim, S.A., Idris, W.M.R., et al., 2016. Mapping nutrient status in oil palm plantation using geographic information system. Asian J. Agric. Res. 10(3-4), 144-153. |
[50] | Rendana, M., Idris, W.M.R., Rahim, S.A., 2022. Effect of COVID-19 movement control order policy on water quality changes in Sungai Langat, Selangor, Malaysia within distinct land use areas. Sains Malays. 51(5), 1587-1598. |
[51] | Rendana, M., Idris, W.M.R., Rahim, S.A., et al., 2023. Flood risk and shelter suitability mapping using geospatial technique for sustainable urban flood management: a case study in Palembang city, South Sumatera, Indonesia. Geology, Ecology, and Landscapes. doi: 10.1080/24749508.2023.2205717. |
[52] | Rizeei, H.M., Saharkhiz, M.A., Pradhan, B., et al., 2016. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 31(10), 1158-1177. |
[53] | Rokni, K., Ahmad, A., Selamat, A., et al., 2014. Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens. 6(5), 4173-4189. |
[54] | Romdania, Y., Herison, A., 2024. The effect of steep slopes on the application of the USLE, RUSLE, and MUSLE methods. ASEAN Engineering Journal. 14(1), 229-236. |
[55] | Roose, E.J., 1977. Application of the universal soil loss equation of Wischmeier and Smith in West Africa. In: Greenland, J., Lal, R., (eds.)Conservation and Management in the Humid Tropics. Chichester: Wiley. |
[56] | Selmy, S.A.H., Abd Al-Aziz, S.H., Jiménez-Ballesta, R., et al., 2021. Modeling and assessing potential soil erosion hazards using USLE and wind erosion models in integration with GIS techniques: Dakhla Oasis, Egypt. Agriculture-Basel. 11(11), 1124, doi: 10.3390/agriculture11111124. |
[57] | Selvanathan, M., Jayabalan, N., Saini, G.K., et al., 2020. Employee productivity in Malaysian Private Higher Educational Institutions. Palarch’s Journal of Archaralogy of Egypt/Egyptogy. 17(3), 66-79. |
[58] | Serio, M.A., Carollo, F.G., Ferro, V., 2019. Raindrop size distribution and terminal velocity for rainfall erosivity studies. A review. J. Hydrol. 576, 210-228. |
[59] | Shah, D., Mishra, V., 2020. Integrated Drought Index (IDI) for drought monitoring and assessment in India. Water Resour. Res. 56(2), e2019WR026284, doi: 10.1029/2019WR026284. |
[60] | Shen, L., Li, C., 2010. Water body extraction from Landsat ETM plus imagery using adaboost algorithm. In: 2010 18th International Conference on Geoinformatics. Beijing, China. |
[61] | Shin, G.J., 1999. The analysis of soil erosion analysis in watershed using GIS. PhD Dissertation. Chuncheon: Gang-won National University. |
[62] | Sinshaw, B.G., Belete, A.M., Tefera, A.K., et al., 2021. Prioritization of potential soil erosion susceptibility region using fuzzy logic and analytical hierarchy process, upper Blue Nile Basin, Ethiopia. Water-Energy Nexus. 4, 10-24. |
[63] | Tsegaye, L., Bharti, R., 2021. Soil erosion and sediment yield assessment using RUSLE and GIS-based approach in Anjeb watershed, Northwest Ethiopia. SN Appl. Sci. 3(5), 582, doi: 10.1007/s42452-021-04564-x. |
[64] | Vicente-Serrano, S.M., Quiring, S.M., Peña-Gallardo, M., et al., 2020. A review of environmental droughts: increased risk under global warming? Earth-Sci. Rev. 201, 102953, doi: 10.1016/j.earscirev.2019.102953. |
[65] | Wilson, E.H., Sader, S.A., 2002. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80(3), 385-396. |
[66] | Wischmeier, W.H., 1959. A rainfall erosion index for a universal soil-loss equation. Soil Sci. Soc. Am. J. 23(3), 181-254. |
[67] | Wu, J.J., Gu, Y.H., Sun, K.X., et al., 2023. Correlation of climate change and human activities with agricultural drought and its impact on the net primary production of winter wheat. J. Hydrol. 620, 129504, doi: 10.1016/j.jhydrol.2023.129504. |
[68] | Yu, Y.H., Shen, Y.Z., Wang, J.L., et al., 2021. Simulation and mapping of drought and soil erosion in Central Yunnan Province, China. Adv. Space Res. 68(11), 4556-4572. |
[69] | Yusof, N.F., Lihan, T., Idris, W.M.R., et al., 2021. Spatially distributed soil losses and sediment yield: A case study of Langat watershed, Selangor, Malaysia. J. Asian Earth Sci. 212, 104742, doi: 10.1016/j.jseaes.2021.104742. |
[70] | Zhang, R.Q., Lu, L., Ye, Z., et al., 2021. Assessment of agricultural drought using soil water deficit index based on ERA5-land soil moisture data in four southern provinces of China. Agriculture-Basel. 11(5), 411, doi: 10.3390/agriculture11050411. |
[1] | Ratan PAL, Buddhadev HEMBRAM, Narayan Chandra JANA. Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau, India [J]. Regional Sustainability, 2024, 5(1): 100112-. |
[2] | Sunil SAHA, Debabrata SARKAR, Prolay MONDAL. Assessing and mapping soil erosion risk zone in Ratlam District, central India [J]. Regional Sustainability, 2022, 3(4): 373-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||