Regional Sustainability ›› 2024, Vol. 5 ›› Issue (4): 100174.doi: 10.1016/j.regsus.2024.100174cstr: 32279.14.REGSUS.2024001
• Review Article • Next Articles
Nazim Forid ISLAMa, Bhoirob GOGOIa,b, Rimon SAIKIAa, Balal YOUSAFc, Mahesh NARAYANd, Hemen SARMAb,*()
Received:
2024-01-25
Revised:
2024-07-14
Accepted:
2024-11-22
Published:
2024-12-30
Online:
2024-12-19
Contact:
Hemen SARMA
E-mail:hemen@buniv.edu.in
Nazim Forid ISLAM, Bhoirob GOGOI, Rimon SAIKIA, Balal YOUSAF, Mahesh NARAYAN, Hemen SARMA. Encouraging circular economy and sustainable environmental practices by addressing waste management and biomass energy production[J]. Regional Sustainability, 2024, 5(4): 100174.
Table 1
Biomass from different sources used in the production of energy in 2010, 2015, and 2020."
Type of energy generated plant | Source of biomass | Amount of biomass used in the production of energy (EJ) | ||
---|---|---|---|---|
2010 | 2015 | 2020 | ||
Electricity only plants | Municipal waste | 0.57 | 0.62 | 0.65 |
Industrial waste | 0.23 | 0.27 | 0.29 | |
Liquid biofuel | 0.00 | 0.00 | 0.00 | |
Biogas | 0.31 | 0.45 | 0.44 | |
Solid biomass | 1.43 | 2.20 | 3.93 | |
Heat only plants | Municipal waste | 0.10 | 0.08 | 0.08 |
Industrial waste | 0.10 | 0.12 | 0.17 | |
Liquid biofuel | 0.00 | 0.00 | 0.00 | |
Biogas | 0.01 | 0.01 | 0.01 | |
Solid biomass | 0.23 | 0.27 | 0.32 | |
Combined heat and power plants | Municipal waste | 0.41 | 0.54 | 0.58 |
Industrial waste | 0.14 | 0.14 | 0.16 | |
Liquid biofuel | 0.00 | 0.00 | 0.00 | |
Biogas | 0.15 | 0.32 | 0.40 | |
Solid biomass | 1.24 | 1.70 | 2.29 |
Table 2
Different energy by-products and conversion technologies to produce bioenergy."
Energy by-products | Conversion technology | Energy outcome | Sources of biomass | Reference |
---|---|---|---|---|
Biohydrogen (H2) | Combustion and anaerobic fermentation | Heat and electricity | Agricultural biomass, forest biomass, municipal solid waste, animal waste, and industrial waste | Kalak ( |
Syngas (CO+H2+CH4) | Gasification and pyrolysis | Electricity, methanol, alkanes, and synthetic diesel | Agricultural biomass, forest biomass, municipal solid waste, animal waste, and industrial waste | Nanda and Berruti ( |
Biochar (carbon+ash, a form of charcoal) | Pyrolysis | Heat | Agricultural biomass, animal waste, and municipal solid waste | Nanda and Berruti ( |
Pyrolysis oil | Pyrolysis | Fossil fuel and power | Agricultural biomass, animal waste, and municipal solid waste | Nanda and Berruti ( |
Bioethanol | Anaerobic fermentation | Electricity | Agricultural biomass, animal waste, municipal solid waste, and industrial waste | Dave et al. ( |
Biogas (methane) | Anaerobic digestion | Heat and electricity for engines, fuel cells, and microturbines | Agricultural biomass, animal waste, municipal solid waste, and industrial waste | Kalak ( |
Biodiesel (methyl esters of fatty acids) | Transesterification | Heat, fuel energy, and electricity | Agricultural biomass, forest biomass, municipal solid waste, animal waste, and industrial waste | Lee et al. ( |
[1] | Alao, M.A., Popoola, O.M., Ayodele, T.R., et al., 2022. Waste to energy nexus: An overview of technologies and implementation for sustainable development. Cleaner Energy Systems. 3, 100034, doi: 10.1016/j.cles.2022.100034. |
[2] | Ali, C.H., Qureshi, A.S., Mbadinga, S.M., et al., 2017. Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach. Renew. Energy. 109, 93-100. |
[3] | Alper, K., Tekin, K., Karagöz, S., et al., 2020. Sustainable energy and fuels from biomass: A review focusing on hydrothermal biomass processing. Sustain. Energ. Fuels. 4(9), 4390-4414. |
[4] | André, L., Zdanevitch, I., Pineau, C., et al., 2019. Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale. Bioresour. Technol. 289, 121737, doi: 10.1016/j.biortech.2019.121737. |
[5] | Ang, K.L., Saw, E.T., He, W., et al., 2021. Sustainability framework for pharmaceutical manufacturing (PM): A review of research landscape and implementation barriers for circular economy transition. J. Clean Prod. 280, 124264, doi: 10.1016/j.jclepro.2020.124264. |
[6] | Angelakis, A.N., Snyder, S.A., 2015. Wastewater treatment and reuse: Past, present, and future. Water. 7(9), 4887-4895. |
[7] | Arelli, V., Juntupally, S., Begum, S., et al., 2020. Significance of pretreatment in enhancing the performance of dry anaerobic digestion of food waste: An insight on full scale implementation strategy with theoretical analogy. Processes. 8(9), 1018, doi: 10.3390/pr8091018. |
[8] | Arpia, A.A., Chen, W.H., Lam, S.S., et al., 2021. Sustainable biofuel and bioenergy production from biomass waste residues using microwave-assisted heating: A comprehensive review. Chem. Eng. J. 403, 126233, doi: 10.1016/j.cej.2020.126233. |
[9] | Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O., et al., 2020. Waste management through composting: Challenges and potentials. Sustainability. 12(11), 4456, doi: 10.3390/su12114456. |
[10] | Balussou, D., McKenna, R., Möst, D., et al., 2018. A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks. Renew. Sust. Energ. Rev. 96, 119-131. |
[11] | Bashir, I., Lone, F.A., Bhat, R.A., et al., 2020. Concerns and threats of contamination on aquatic ecosystems. In: Hakeem, K.R., Bhat, R.A., Qadri, H., (eds.). Bioremediation and Biotechnology. Cham: Springer, 1-26. |
[12] | Bhat, R.A., Dar, G.H., Tonelli, F.M.P., et al., 2024. Aquatic Contamination:Tolerance and Bioremediation. New York: Wiley. |
[13] | Bhatia, L., Paliwal, S., 2010. Banana peel waste as substrate for ethanol production. International Journal of Biotechnology and Bioengineering Research. 1(2), 213-218. |
[14] | Bhatia, L., Johri, S., 2018. Optimization of simultaneous saccharification and fermentation parameters for sustainable ethanol production from wheat straw by Pichia stipitis NCIM 3498. Indian J. Exp. Biol. 56(12), 932-941. |
[15] | Bhatia, L., Garlapati, V.K., Chandel, A.K., 2019. Scalable technologies for lignocellulosic biomass processing into ccellulosicethanol. In: Pogaku, R., (ed.). Horizons in Bioprocess Engineering. Cham: Springer, 73-90. |
[16] | Bonatto, C., Camargo, A.F., Scapini, T., et al., 2020. Biomass to bioenergy research:Current and future trends for Biofuels. In: Gupta, V.K., Treichel, H., Kuhad, R.C., et al., (eds.). Recent Developments in Bioenergy Research. Amsterdam: Elsevier. |
[17] | Chang, K.L., Lin, Y.C., Jhang, S.R., et al., 2017. Rapid jatropha-castor biodiesel production with microwave heating and a heterogeneous base catalyst nano-Ca(OH)2/Fe3O4. Catalysts. 7(7), 203, doi: 10.3390/catal7070203. |
[18] | Charef, R., Emmitt, S., 2021. Uses of building information modelling for overcoming barriers to a circular economy. J. Clean Prod. 285, 124854, doi: 10.1016/j.jclepro.2020.124854. |
[19] | Chaturvedi, V., Verma, P., 2016. Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing. 3, 38, doi: 10.1186/s40643-016-0116-6. |
[20] | Chen, W.H., Lin, B.J., Lin, Y.Y., et al., 2021. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887, doi: 10.1016/j.pecs.2020.100887. |
[21] | Chen, Y.C., 2018. Effects of urbanization on municipal solid waste composition. Waste Manage. 79, 828-836. |
[22] | Corona, B., Shen, L., Reike, D., et al., 2019. Towards sustainable development through the circular economy - A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 151, 104498, doi: 10.1016/j.resconrec.2019.104498. |
[23] | Dai, L.L., Wang, Y.P., Liu, Y.H., et al., 2019. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renew. Sust. Energ. Rev. 107, 20-36. |
[24] | Dave, N., Selvaraj, R., Varadavenkatesan, T., et al., 2019. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 42, 101606, doi: 10.1016/j.algal.2019.101606. |
[25] | de Melo, T.A.C., de Oliveira, M.A., de Sousa, S.R.G., et al., 2022. Circular economy public policies: A systematic literature review. Procedia Computer Science. 204(C), 652-662. |
[26] | de Morais, M.G., de Morais, E.G., Cardias, B.B., et al., 2020. Microalgae as a source of sustainable biofuels. In: Gupta, V.K., Treichel, H., Kuhad, R.C., et al., (eds.)Recent Developments in Bioenergy Research. Amsterdam: Elsevier, 253-271. |
[27] | Debrah, J.K., Vidal, D.G., Dinis, M.A.P., 2021. Raising awareness on solid waste management through formal education for sustainability: A developing countries evidence review. Recycling-Basel. 6(1), 6, doi: 10.3390/recycling6010006. |
[28] | Dhyani, V., Bhaskar, T., 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy. 129, 695-716. |
[29] | Di Fraia, S., Fabozzi, S., Macaluso, A., et al., 2020. Energy potential of residual biomass from agro-industry in a Mediterranean region of southern Italy (Campania). J. Clean Prod. 277, 124085, doi: 10.1016/j.jclepro.2020.124085. |
[30] | Diggle, A., Walker, T.R., 2022. Environmental and economic impacts of mismanaged plastics and measures for mitigation. Environments. 9(2), 15, doi: 10.3390/environments9020015. |
[31] | Duan, F., Zhang, J.P., Chyang, C.S., et al., 2014. Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel Process. Technol. 128, 28-35. |
[32] | Durdyev, S., Koc, K., Tleuken, A., et al., 2023. Barriers to circular economy implementation in the construction industry: Causal assessment model. Environ. Dev. Sustain. doi: 10.1007/s10668-023-04061-8. |
[33] | Ellen MacArthur Foundation, 2015. Circular Economy Courses. [2024-01-02]. https://www.ellenmacarthurfoundation.org/resources/education-and-learning/circular-economy-courses. |
[34] | Esmaeilian, B., Wang, B., Lewis, K., et al., 2018. The future of waste management in smart and sustainable cities: A review and concept paper. Waste Manage. 81, 177-195. |
[35] | Evcan, E., Tari, C., 2015. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy. 88, 775-782. |
[36] | Ferraz, D., Pyka, A., 2023. Circular economy, bioeconomy, and sustainable development goals: a systematic literature review. Environ. Sci. Pollut. Res. 30(47), doi: 10.1007/s11356-023-29632-0. |
[37] | Gavrilescu, D., Teodosiu, C., David, M., 2020. Environmental assessment of wastewater discharges at river basin level by means of waste absorption footprint. Sustain. Prod. Consump. 21, 33-46. |
[38] | Geissdoerfer, M., Savaget, P., Bocken, N.M.P., et al., 2017. The circular economy - A new sustainability paradigm? J. Clean Prod. 143, 757-768. |
[39] | Ghisellini, P., Cialani, C., Ulgiati, S., 2016. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean Prod. 114, 11-32. |
[40] | Gogoi, B., Sarma, H., 2023. Rhizoremediation of persistent organic pollutants (POPs) from the soil. In: Sarma, H., Joshi, S., (eds.). Land Remediation and Management:Bioengineering Strategies. Singapore: Springer, 49-78. |
[41] | Gogoi, B., Islam, N.F., Sarma, H., 2024. Microbes are the natural ecological engineers in the forest ecosystem. Biotechnology of Emerging Microbes. doi: 10.1016/B978-0-443-15397-6.00011-5. |
[42] | González-González, L.M., Zhou, L.H., Astals, S., et al., 2018. Biogas production coupled to repeat microalgae cultivation using a closed nutrient loop. Bioresour. Technol. 263, 625-630. |
[43] | Govindan, K., Hasanagic, M., 2018. A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective. Int. J. Prod. Res. 56(1-2), 278-311. |
[44] | Guerra, B.C., Leite, F., 2021. Circular economy in the construction industry: An overview of United States stakeholders’ awareness, major challenges, and Enablers. Resour. Conserv. Recycl. 170, 105617, doi: 10.1016/j.resconrec.2021.105617. |
[45] | Guerrero, A.B., Ballesteros, I., Ballesteros, M., 2018. The potential of agricultural banana waste for bioethanol production. Fuel. 213, 176-185. |
[46] | Hawkins, H.J., Cargill, R.I.M., Van Nuland, M.E., et al., 2023. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33(11), 560-573. |
[47] | Hiloidhari, M., Das, D., Baruah, D.C., et al., 2014. Bioenergy potential from crop residue biomass in India. Renew. Sust. Energ. Rev. 32, 504-512. |
[48] | Hilson, G., 2000. Barriers to implementing cleaner technologies and cleaner production (CP) practices in the mining industry: A case study of the Americas. Miner. Eng. 13(7), 699-717. |
[49] | Holly, F., Kolar, G., Berger, M., et al., 2023. Challenges on the way to a circular economy from the perspective of the Austrian manufacturing industry. Frontiers in Sustainability. 4, 1243374, doi: 10.3389/frsus.2023.1243374. |
[50] | Hossain, M., Park, S., Suchek, N., et al., 2024. Circular economy: A review of review articles. Bus. Strateg. Environ. 33(7), 7077-7099. |
[51] | Houghton, R.A., Hall, F., Goetz, S.J., et al., 2009. Importance of biomass in the global carbon cycle. J. Geophys. Res.-Biogeosci. 114, G00E03, doi: 10.1029/2009JG000935. |
[52] | Hu, M., Gao, L., Chen, Z., et al., 2016. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 111, 409-416. |
[53] | IEA (International Energy Agency), 2019. Global Energy Review 2019 - Analysis. [2024-01-02]. https://www.iea.org/reports/global-energy-review-2019. |
[54] | IFEU (Institut für Energie- und Umweltforschung Heidelberg), 2010. Environmental Methodology and Data Update 2020. [2024-01-02]. https://www.ifeu.de/en/publication/environmental-methodology-and-data-update-2020/. |
[55] | Jang, J., Woo, S.Y., 2024. Forest biomass characterization and exploitation. Encyclopedia of Renewable Energy, Sustainability and the Environment. 1, 519-528. |
[56] | Kalak, T., 2023. Potential use of industrial biomass waste as a sustainable energy source in the future. Energies. 16(4), 1783, doi: 10.3390/en16041783. |
[57] | Kiehbadroudinezhad, M., Merabet, A., Hosseinzadeh-Bandbafha, H., 2023. Bioenergy programs in North and South America and Canada. In: Rahimpour, M.R., (ed.). Encyclopedia of Renewable Energy, Sustainability and the Environment. Amsterdam: Elsevier. |
[58] | Kirchherr, J., Yang, N.H.N., Schulze-Spüntrup, F., et al., 2023. Conceptualizing the circular economy (revisited): An analysis of 221 definitions. Resour. Conserv. Recycl. 194, 107001, doi: j.resconrec.2023.107001. |
[59] | Krausmann, F., Wiedenhofer, D., Lauk, C., et al., 2017. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl. Acad. Sci. U. S. A. 114(8), 1880-1885. |
[60] | Kumar, A., Kumar, N., Baredar, P., et al., 2015. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sust. Energ. Rev. 45, 530-539. |
[61] | Lamba, H.K., Kumar, N.S., Dhir, S., 2023. Circular economy and sustainable development: A review and research agenda. Int. J. Product Perform. Manag. 73(2), 497-522. |
[62] | Lee, S.Y., Sankaran, R., Chew, K.W., et al., 2019. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy. 1, 4, doi: 10.1186/s42500-019-0004-7. |
[63] | Malico, I., Pereira, R.N., Gonçalves, A.C., et al., 2019. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sust. Energ. Rev. 112, 960-977. |
[64] | Martini, S., Kharismadewi, D., Mardwita, et al., 2023. Biomass potential as an alternative resource for valuable products in the perspective of environmental sustainability and a circular economy system. IOP Conference Series: Earth and Environmental Science. 1175(1), 012012, doi: 10.1088/1755-1315/1175/1/012012. |
[65] | Mendes, F.B., Bordignon, S.E., 2020. Renewable energy and the role of biofuels in the current world. In: Gupta, V.K., Treichel, H., Kuhad, R.C., et al., (eds.). Recent Developments in Bioenergy Research. Amsterdam: Elsevier, 65-84. |
[66] | Mendes, I., Rocha, P., Aragão, A., et al., 2023. Advancing sustainable bio-waste management through law and policy: How co-creation can help pursue fair environmental public policies in the European context. Soc. Sci.-Basel. 12(10), 572, doi: 10.3390/socsci12100572. |
[67] | Merewether, J., Blaise, M., Pitchford, K., et al., 2023. Unsettling “reduce-reuse-recycle”: The provocation of wastepaper and “discarding well”. The Journal of Environmental Education. 54(3), 199-212. |
[68] | Mishra, B., Mohanta, Y.K., Reddy, C.N., et al., 2023. Valorization of agro-industrial biowaste to biomaterials: An innovative circular bioeconomy approach. Circular Economy. 2(3), 100050, doi: 10.1016/j.cec.2023.100050. |
[69] | Mostafa, S., Dumrak, J., 2015. Waste elimination for manufacturing sustainability. Procedia Manufacturing. 2, 11-16. |
[70] | Muller, L.N.P.E.S., Delai, I., Alcantara, R.L.C., et al., 2022. Circular value chain practices for developing resource value retention options. J. Clean Prod. 359, 131925, doi: 10.1016/j.jclepro.2022.131925. |
[71] | Nanda, S., Berruti, F., 2021. A technical review of bioenergy and resource recovery from municipal solid waste. J. Hazard. Mater. 403, 123970, doi: 10.1016/j.jhazmat.2020.123970. |
[72] | Nayak, M.G., Vyas, A.P., 2019. Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology. Renew. Energy. 138, 18-28. |
[73] | Nguyen, K.L.P., Chuang, Y.H., Chen, H.W., et al., 2020. Impacts of socioeconomic changes on municipal solid waste characteristics in Taiwan. Resour. Conserv. Recycl. 161, 104931, doi: 10.1016/j.resconrec.2020.104931. |
[74] | Ong, H.C., Chen, W.H., Farooq, A., et al., 2019. Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renew. Sust. Energ. Rev. 113, 109266, doi: 10.1016/j.rser.2019.109266. |
[75] | Osei-Tutu, S., Ayarkwa, J., Osei-Asibey, D., et al., 2022. Barriers impeding circular economy (CE) uptake in the construction industry. Smart Sustain. Built Environ. 12(4), 892-918. |
[76] | Oyejobi, D.O., Firoozi, A.A., Fernández, D.B., et al., 2024. Integrating circular economy principles into concrete technology: Enhancing sustainability through industrial waste utilization. Results Eng. 24, 102846, doi: 10.1016/j.rineng.2024.102846. |
[77] | Pandey, P., Shinde, V.N., Deopurkar, R.L., et al., 2016. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy. 168, 706-723. |
[78] | Parawira, W., Read, J.S., Mattiasson, B., et al., 2008. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenerg. 32(1), 44-50. |
[79] | Pattnaik, B., Sarangi, P.K., Jena, P.K., et al., 2022. Production of phenolic flavoring compounds from sugarcane bagasse by Lactobacillus acidophilus MTCC 10307. Arch. Microbiol. 204(1), 23, doi: 10.1007/s00203-021-02655-2. |
[80] | Peñate-Valentín, M.C., Sánchez-Carreira, M.D.C., Pereira, A., 2021. The promotion of innovative service business models through public procurement. An analysis of energy service companies in Spain. Sustain. Prod. Consump. 27, 1857-1868. |
[81] | Qin, L., Wang, M.J., Zhu, J.F., et al., 2021. Towards circular economy through waste to biomass energy in Madagascar. Complexity. 5822568, doi: 10.1155/2021/5822568. |
[82] | Rahla, K.M., Mateus, R., Bragança, L., 2021. Implementing circular economy strategies in buildings - from theory to practice. Appl. Syst. Innov. 4(2), 26, doi: 10.3390/asi4020026. |
[83] | Reike, D., Vermeulen, W.J.V., Witjes, S., 2018. The circular economy: New or refurbished as CE 3.0? - Exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 135, 246-264. |
[84] | Sabbaghi, M., Behdad, S., Zhuang, J., 2016. Managing consumer behavior toward on-time return of the waste electrical and electronic equipment: A game theoretic approach. Int. J. Prod. Econ. 182, 545-563. |
[85] | Saleem, M., 2022. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon. 8(2), e08905, doi: 10.1016/j.heliyon.2022.e08905. |
[86] | Sarma, H., Gogoi, B., Guan, C.Y., et al., 2024. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. Chemosphere. 356, 141795, doi: 10.1016/j.chemosphere.2024.141795. |
[87] | Schroeder, P., Anggraeni, K., Weber, U., 2018. The relevance of circular economy practices to the Sustainable Development Goals. J. Ind. Ecol. 23(1), 77-95. |
[88] | Sgroi, F., 2022. Circular economy and environmental protection. AIMS Environ. Sci. 9(2), 122-127. |
[89] | Sharma, H.B., Vanapalli, K.R., Samal, B., et al., 2021. Circular economy approach in solid waste management system to achieve UN-SDG: Solutions for post-COVID Recovery. Sci. Total Environ. 800, 149605, doi: 10.1016/j.scitotenv.2021.149605. |
[90] | Shershneva, E.G., 2022. Analysis of correlation between waste accumulation and countries welfare level. IOP Conference Series: Earth and Environmental Science. 988(2), 022034, doi: 10.1088/1755-1315/988/2/022034. |
[91] | Siegrist, A., Bowman, G., Burg, V., 2022. Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production. Appl. Energy. 327, 120075, doi: 10.1016/j.apenergy.2022.120075. |
[92] | Singh, H.M., Pathak, A.K., Chopra, K., et al., 2019. Microbial fuel cells: A sustainable solution for bioelectricity generation and wastewater treatment. Biofuels-UK. 10(1), 11-31. |
[93] | Steffen, W., Richardson, K., Rockström, J., et al., 2015. Planetary boundaries: Guiding human development on a changing planet. Science. 347(6223), 1259855, doi: 10.1126/science.1259855. |
[94] | Thornley, P., Gilbert, P., Shackley, S., et al., 2015. Maximizing the greenhouse gas reductions from biomass: The role of life cycle assessment. Biomass Bioenerg. 81, 35-43. |
[95] | Tolessa, A., 2023. Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon. 9(2), e13572, doi: 10.1016/j.heliyon.2023.e13572. |
[96] | Traven, L., 2023. Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Studies in Chemical and Environmental Engineering. 8, 100491, doi: 10.1016/j.cscee.2023.100491. |
[97] | Ubando, A.T., Rivera, D.R.T., Chen, W.H., et al., 2019. A comprehensive review of life cycle assessment (LCA) of Microalgal and lignocellulosic bioenergy products from Thermochemical Processes. Bioresour. Technol. 291, 121837, doi: 10.1016/j.biortech.2019.121837. |
[98] | Uma, V.S., Dineshbabu, G., 2020. Biobased fats and oils from microalgae. In: Gupta, V.K., Treichel, H., Kuhad, R.H., et al., (eds.). Recent Developments in Bioenergy Research. Amsterdam: Elsevier, 273-298. |
[99] | Vaish, B., Srivastava, V., Singh, P.K., et al., 2019. Energy and nutrient recovery from agro-wastes: Rethinking their potential possibilities. Environ. Eng. Res. 25(5), 623-637. |
[100] | Vaish, S., Kaur, G., Sharma, N.K., et al., 2022. Estimation for potential of agricultural biomass sources as projections of bio-briquettes in Indian context. Sustainability. 14(9), 5077, doi: 10.3390/su14095077. |
[101] | Vishwanathan, A.S., 2021. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech. 11(5), 248, doi: 10.1007/s13205-021-02802-y. |
[102] | Voukkali, I., Papamichael, I., Loizia, P., et al., 2023. Urbanization and solid waste production: Prospects and challenges. Environ. Sci. Pollut. Res. 31, 17678-17689. |
[103] | WBA (World Bioenergy Association), 2022. Global Bioenergy Statistics Report. [2024-01-02]. https://www.worldbioenergy.org/. |
[104] | World Bank Group, 2018. Global Waste to Grow by 70 Percent by 2050 Unless Urgent Action is Taken: World Bank Report. [2024-01-02]. https://www.worldbank.org/en/news/press-release/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unless-urgent-action-is-taken-world-bank-report. |
[105] | Ye, J.C., Zhang, R.W., Bannon, J.E., et al., 2020. Identifying practice facilitation delays and barriers in primary care quality improvement. J. Am. Board Fam. Med. 33(5), 655-664. |
[106] | Yu, Q., Wang, Y.C., Van Le, Q., et al., 2021. An overview on the conversion of forest biomass into bioenergy. Front. Energy Res. 9, 684234, doi: 10.3389/fenrg.2021.684234. |
[107] | Zabot, G.L., Tres, M.V., Ferreira, P.A.A., et al., 2020. Power the future with bioenergy from organic wastes. In: Gupta, V.K., Treichel, H., Kuhad, R.H., et al., (eds.)Recent Developments in Bioenergy Research. Amsterdam: Elsevier, 85-114. |
[108] | Zhao, W.W., Yin, C.C., Hua, T., et al., 2022. Achieving the sustainable development goals in the post-pandemic era. Hum. Soc. Sci. Commun. 9(1), 258, doi: 10.1057/s41599-022-01283-5. |
[109] | Zhou, C.F., Wang, Y.X., 2020. Recent progress in the conversion of biomass wastes into functional materials for value-added applications. Sci. Technol. Adv. Mater. 21(1), 787-804. |
[1] | LIU Binsheng, ZHANG Xiaohui, TIAN Junfeng, CAO Ruimin, SUN Xinzhang, XUE Bin. Rural sustainable development: A case study of the Zaozhuang Innovation Demonstration Zone in China [J]. Regional Sustainability, 2023, 4(4): 390-404. |
[2] | Md. Mominur RAHMAN. Impact of taxes on the 2030 Agenda for Sustainable Development: Evidence from Organization for Economic Co-operation and Development (OECD) countries [J]. Regional Sustainability, 2023, 4(3): 235-248. |
[3] | Surendra Singh JATAV, Kalu NAIK. Measuring the agricultural sustainability of India: An application of Pressure-State-Response (PSR) model [J]. Regional Sustainability, 2023, 4(3): 218-234. |
[4] | Edson Elídio BALATA, Hugo PINTO, Manuela Moreira da SILVA. Latent dimensions between water use and socio-economic development: A global exploratory statistical analysis [J]. Regional Sustainability, 2022, 3(3): 269-280. |
[5] | Firoz AHMAD, Nazimur Rahman TALUKDAR, Laxmi GOPARAJU, Chandrashekhar BIRADAR, Shiv Kumar DHYANI, Javed RIZVI. GIS-based assessment of land-agroforestry potentiality of Jharkhand State, India [J]. Regional Sustainability, 2022, 3(3): 254-268. |
[6] | Giribabu DANDABATHULA, Sudhakar Reddy CHINTALA, Sonali GHOSH, Padmapriya BALAKRISHNAN, Chandra Shekhar JHA. Exploring the nexus between Indian forestry and the Sustainable Development Goals [J]. Regional Sustainability, 2021, 2(4): 308-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||