Regional Sustainability ›› 2023, Vol. 4 ›› Issue (1): 96-114.doi: 10.1016/j.regsus.2023.03.002cstr: 32279.14.j.regsus.2023.03.002
• Full Length Article • Previous Articles
Received:
2022-10-15
Accepted:
2023-03-01
Published:
2023-03-30
Online:
2023-04-14
Contact:
LI Xiaokang
E-mail:lixiaokang@hbut.edu.cn
LI Xiaokang, LEI Lin. Evaluating rural sustainable land use from a system perspective based on the ecosystem service value[J]. Regional Sustainability, 2023, 4(1): 96-114.
Table 1
Classification of rural land use types and ecosystems."
Land use type | Land description | Ecosystem type | Main ecosystem service | |
---|---|---|---|---|
Ecological land | Arable land | Paddy fields, irrigated fields, and dry land | Farmland ecosystem | Food production, regulation of gas, soil, hydrology, climate, biological diversity, and nutrient cycling, and waste treatment |
Garden land | Land occupied by orchards and tea, mulberry, and rubber trees | |||
Forest land | Land with forests, woodland arbors, and shrubs | Forest land ecosystem | Raw materials supply, regulation of biological diversity, gas, soil, hydrology and climate, and waste treatment | |
Grassland | Both natural and artificial grassland | Grassland ecosystem | Food supply, regulation of soil, gas, hydrology and biological diversity, and waste treatment | |
Water body | Rivers, lakes, reservoirs, waterholes, and tidal flats | Wetland ecosystem | Food production, regulation of hydrology, climate and biological diversity, and waste treatment | |
Unused land | Bare land, sandy land, and barren grassland | Desert ecosystem | Regulation of hydrology and soil | |
Construction land | Residential land | Rural settlement, including the land for housing, commercial, and public management and services | Construction land ecosystem | Negative effects on ecosystem service, such as obstruction of hydrological regulation, waste treatment, and increasing air pollution |
Industrial and mining land | Land for industry, mining, and storage | |||
Traffic land | Land for railways, rail transit, highways, airports, harbors, and roads in towns and rural areas | |||
Other construction land | Land for religious purposes, the military, scenic facilities, etc. |
Table 2
Error matrix based on samples of the classification in 2020."
Actual land use type | Number of classified samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Arable land | Garden land | Forest land | Water body | Unused land | Residential land | Industrial and mining land | Traffic land | Scenic facility land | Sum | |
Arable land | 96 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 100 |
Garden land | 0 | 14 | 0 | 0 | 2 | 0 | 1 | 3 | 0 | 20 |
Forest land | 0 | 4 | 107 | 2 | 0 | 0 | 0 | 12 | 5 | 130 |
Water body | 0 | 0 | 6 | 70 | 4 | 3 | 3 | 2 | 12 | 100 |
Unused land | 1 | 0 | 0 | 5 | 14 | 0 | 0 | 0 | 0 | 20 |
Residential land | 1 | 1 | 4 | 3 | 0 | 171 | 0 | 0 | 0 | 180 |
Industrial and mining land | 0 | 0 | 3 | 0 | 1 | 3 | 25 | 0 | 3 | 35 |
Traffic land | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 74 | 0 | 80 |
Scenic facility land | 0 | 0 | 12 | 2 | 2 | 5 | 2 | 4 | 33 | 60 |
Sum | 98 | 19 | 134 | 82 | 25 | 184 | 33 | 97 | 53 | 725 |
Producer | 0.9796 | 0.7368 | 0.7985 | 0.8537 | 0.5600 | 0.9293 | 0.7576 | 0.7629 | 0.6226 | - |
User | 0.9600 | 0.7000 | 0.8231 | 0.7000 | 0.7000 | 0.9500 | 0.7143 | 0.9250 | 0.5500 | - |
Overall accuracy | 0.8331 | |||||||||
Kappa coefficient | 0.8025 |
Table 3
Value for each level of land use intensity."
Level of land use intensity | Level of bare land | Level of forest land, grassland, and water body | Level of agricultural land | Level of urban and rural settlement land |
---|---|---|---|---|
Land use type | Unused land | Forest land, grassland, and water body | Artificial grassland, arable land, and garden land | Residential land, industrial and mining land, traffic land, and other construction land |
A | 1 | 2 | 3 | 4 |
Table 5
Description of formula used to calculate the missing ESVs of the four construction land use types."
Construction land use type | Missing ecosystem service | Equation | Explanation of the parameter |
---|---|---|---|
Residential land | Hydrological regulation | VHR-R is the replacement value of hydrological regulation from residential land (CNY); Wl is the water consumption of residents (t); and Pl is the unit price for living water (CNY/t). | |
Waste treatment | VWT-R is the replacement value of waste treatment from residential land (CNY); Wds is the domestic sewage discharge (t); Pds is the unit price of domestic sewage treatment (CNY/t); Qdw is the number of households; and Pdw is the price of domestic waste treatment per household (CNY/household). | ||
VR is the replacement value of the missing ecosystem services from residential land (CNY). | |||
Industrial and mining land | Hydrological regulation | VHR-I is the replacement value of hydrologic regulation from industrial and mining land (CNY); Wi is the water consumption from industrial production (t); and Ri is the unit price for industrial water (CNY/t). | |
Waste treatment | VWT-I is the replacement value of waste treatment from industrial and mining land (CNY); Wiw is the industrial sewage discharge (t); Piw is the unit price of industrial sewage treatment (CNY/t); Mis is the production of industrial solid waste (t); Pis is the unit price of industrial solid waste treatment (CNY/t); Gig is the industrial exhaust emissions (t); and Pig is the unit price of industrial exhaust emission treatment (CNY/t). | ||
VI is the replacement value of the missing ecosystem services from industrial and mining land (CNY). | |||
Traffic land | Hydrological regulation | VHR-T is the replacement value of the hydrologic regulation from traffic land (CNY); ST is the area of traffic land (hm2); SR is the area of residential land (hm2). | |
Waste treatment | VWT-T is the replacement value of waste treatment from traffic land (CNY); α is the coefficient of air pollution and is set as 10.00% in this paper; Qt is the total number of people; and Pt is the per capita transportation costs (CNY). | ||
VT is the replacement value of the missing ecosystem services from traffic land (CNY). | |||
Other construction land | Hydrological regulation | VO is the replacement value of the hydrologic regulation from other construction land types (CNY); SO is the area of the other types of construction land (hm2); and SR is the area of residential land (hm2). |
Table 6
Description of the method used to judge the harmonious relationship between ecology and economy."
EEHD | Explanation |
---|---|
≥1 | The ESV grows faster than the economy. Economic development can be accelerated. |
0≤EEHD<1 | The economy grows faster than the ESV. The economic growth has not resulted in the deterioration of the ecology. |
-1≤EEHD<0 | There is a negative growth in the ESV, which indicates that the economic growth has a negative impact on the ecology, and the relationship between ecology and economy is inharmonious. |
EEHD≤-1 | The ESV has declined significantly, and the ecology has deteriorated. The economic development seriously negatively impacts the ecology protection. The ecology and economy are highly inharmonious. |
Table 7
Discriminating criteria for the coupling coordination of the land and eco-economic systems."
Coupling coordination degree | Class | Coupling coordination degree | Subclass |
---|---|---|---|
0.0-0.4 | Uncoordinated development | 0.0-0.1 | Extreme uncoordinated development |
0.1-0.2 | Serious uncoordinated development | ||
0.2-0.3 | Moderate uncoordinated development | ||
0.3-0.4 | Mild uncoordinated development | ||
0.4-0.6 | Transitional development | 0.4-0.5 | On the verge of uncoordinated development |
0.5-0.6 | Barely coordinated development | ||
0.6-1.0 | Coordinated development | 0.6-0.7 | Primary coordinated development |
0.7-0.8 | Intermediate coordinated development | ||
0.8-0.9 | Favorable coordinated development | ||
0.9-1.0 | Advanced coordinated development |
Table 8
Land use areas in Yanhe eco-village in different years."
Year | Ecological land (hm2) | Construction land (hm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Arable land | Garden land | Forest land | Water body | Unused land | Subtotal | Residential land | Industrial and mining land | Traffic land | Scenic facility land | Subtotal | |
2008 | 65.44 | 66.70 | 985.83 | 21.39 | 4.05 | 1143.41 | 6.51 | 0.34 | 8.35 | 4.63 | 19.83 |
2012 | 80.54 | 77.86 | 944.60 | 15.47 | 19.71 | 1138.18 | 6.54 | 0.34 | 13.12 | 5.06 | 25.06 |
2014 | 58.71 | 80.57 | 972.23 | 14.01 | 8.12 | 1133.64 | 6.59 | 0.34 | 15.89 | 6.78 | 29.60 |
2016 | 56.79 | 82.84 | 968.68 | 14.16 | 8.41 | 1130.88 | 6.59 | 0.34 | 18.55 | 6.88 | 32.36 |
2020 | 55.23 | 82.72 | 965.22 | 15.24 | 6.59 | 1125.00 | 8.31 | 0.34 | 19.78 | 9.81 | 38.24 |
Table 10
Ecosystem service values (ESVs) of different land ecosystems in different periods in Yanhe eco-village."
Land use type | Ecosystem type | ESV (×106 CNY) | |||||
---|---|---|---|---|---|---|---|
2008 | 2012 | 2014 | 2016 | 2020 | |||
Ecological land | Arable land | Farmland ecosystem | 1.13 | 1.39 | 1.01 | 0.98 | 0.95 |
Garden land | 2.62 | 3.06 | 3.17 | 3.26 | 3.25 | ||
Forest land | Forest land ecosystem | 60.55 | 58.02 | 59.72 | 59.50 | 59.29 | |
Water body | Wetland ecosystem | 2.12 | 1.53 | 1.39 | 1.40 | 1.51 | |
Unused land | Desert ecosystem | 0.01 | 0.06 | 0.02 | 0.03 | 0.02 | |
Subtotal | 66.44 | 64.07 | 65.31 | 65.17 | 65.03 | ||
Construction land | Residential land | Construction land ecosystem | -0.06 | -0.05 | -0.05 | -0.06 | -0.06 |
Industrial and mining land | -0.01 | -0.01 | -0.01 | -0.01 | -0.01 | ||
Traffic land | -0.09 | -0.11 | -0.14 | -0.19 | -0.23 | ||
Scenic facility land | -0.03 | -0.02 | -0.03 | -0.04 | -0.07 | ||
Subtotal | -0.18 | -0.18 | -0.23 | -0.29 | -0.37 | ||
Total | 66.25 | 63.89 | 65.08 | 64.88 | 64.66 |
[1] | Boone C.G., Redman C.L., Blanco H., et al., 2014. Reconceptualizing land for sustainable urbanity. In: Seto K.C., Reenberg A., (eds.). Rethinking Urban Land Use in a Global Era. Cambridge: MIT Press, 313-330. |
[2] |
Charoenratana S., Shinohara C., 2018. Rural farmers in an unequal world: Land rights and food security for sustainable well-being. Land Use Pol. 78, 185-194.
doi: 10.1016/j.landusepol.2018.06.042 |
[3] | Chuai X.W., Huang X.J., Wang W.J., et al., 2015. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 103, 77-86. |
[4] |
Costanza R., d’Arge R., Groot R.D., et al., 1997. The value of the world’s ecosystem services and natural capital. Nature. 387, 253-260.
doi: 10.1038/387253a0 |
[5] |
Dijk T.V., 2003. Scenarios of Central European land fragmentation. Land Use Pol. 20, 149-158.
doi: 10.1016/S0264-8377(02)00082-0 |
[6] |
Dong G.L., Zhang W.X., Xu X.L., et al., 2021. Multi-dimensional feature recognition and policy implications of rural human-land relationships in China. Land. 10, 1086, doi: 10.3390/land10101086.
doi: 10.3390/land10101086 |
[7] |
Du X.J., Huang Z.H., 2017. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou, China. Ecol. Indic. 81, 243-251.
doi: 10.1016/j.ecolind.2017.05.040 |
[8] |
Erb K.H., Haberl H., Jepsen M.R., et al., 2013. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5, 464-470.
doi: 10.1016/j.cosust.2013.07.010 |
[9] |
Fan Y., Yu G.M., He Z.Y., et al., 2017. Entropies of the Chinese land use/cover change from 1990 to 2010 at a county level. Entropy. 19(2), 51, doi:10.3390/e19020051.
doi: 10.3390/e19020051 |
[10] |
Fan Y.P., Fang C.L., Zhang Q., 2019. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 229, 289-298.
doi: 10.1016/j.jclepro.2019.05.027 |
[11] | FAO Food and Agriculture Organization of the United Nations, 1993. FESLM: An International Framework for Evaluating Sustainable Land Management.[2023-01-15].https://www.fao.org/3/T1079E/T1079E00.htm |
[12] |
Fu B.L., Li Y., Wang Y.Q., et al., 2016. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 69, 873-881.
doi: 10.1016/j.ecolind.2016.05.048 |
[13] | Gao J., Li F., Gao H., et al., 2017. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 163, S148-S155. |
[14] | GAQS General administration of quality supervision, inspection and quarantine of the People’s Republic of China, SA Standardization administration of the People’s Republic of China, 2017. Current Land Use Classification. Beijing: China Standard Press, 2-6. (in Chinese) |
[15] |
Gashaw T., Tulu T., Argaw M., et al., 2018. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 31, 219-228.
doi: 10.1016/j.ecoser.2018.05.001 |
[16] |
Guo P.F., Zhang F.F., Wang H.Y., 2022. The response of ecosystem service value to land use change in the middle and lower Yellow River: A case study of the Henan section. Ecol. Indic. 140, 109019, doi: 10.1016/j.ecolind.2022.109019.
doi: 10.1016/j.ecolind.2022.109019 |
[17] |
He C.C., Han Q., de Vries B., et al., 2017. Evaluation of sustainable land management in urban area: A case study of Shanghai, China. Ecol. Indic. 80, 106-113.
doi: 10.1016/j.ecolind.2017.05.008 |
[18] |
Hou D., Ding Z., Li G., et al., 2018. A sustainability assessment framework for agricultural land remediation in China. Land Degrad. Dev. 29(4), 1005-1018.
doi: 10.1002/ldr.v29.4 |
[19] | IBRD International Bank for Reconstruction and Development), IDA (International Development Association), 2023. Arable Land (Hectares Per Person).[2023-02-28]. https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC. |
[20] |
Jat M.K., Khare D., Garg P.K., 2008. Urbanization and its impact on groundwater: a remote sensing and GIS-based assessment approach. The Environmentalist. 29, 17-32.
doi: 10.1007/s10669-008-9176-2 |
[21] |
Jiang W., 2018. Mapping ecosystem service value in Germany. Int. J. Sust. Dev. World. 25(6), 518-534.
doi: 10.1080/13504509.2018.1430623 |
[22] |
Kepe T., 2016. Rural geography research in post-apartheid South Africa: patterns and opportunities. S. Afr. Geogr. J. 98, 495-504.
doi: 10.1080/03736245.2016.1212731 |
[23] |
Kreuter U.P., Harris H.G., Matlock M.D., et al., 2001. Change in ecosystem service values in the San Antonio area. Ecol. Econ. 39 (3), 333-346.
doi: 10.1016/S0921-8009(01)00250-6 |
[24] |
Kuemmerle T., Erb K., Meyfroidt P., et al., 2013. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484-493.
doi: 10.1016/j.cosust.2013.06.002 |
[25] |
Lafuite A.S., Denise G., Loreau M., 2018. Sustainable land-use management under biodiversity lag effects. Ecol. Econ. 154, 272-281.
doi: 10.1016/j.ecolecon.2018.08.003 pmid: 30214128 |
[26] |
Le Q.B., Park S.J., Vlek P.L.G., 2010. Land Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system. Ecol. Inform. 5(3), 203-221.
doi: 10.1016/j.ecoinf.2010.02.001 |
[27] |
Li C., Wu Y.M., Gao B.P., et al., 2021. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 132, 108328, doi: 10.1016/j.ecolind.2021.108328.
doi: 10.1016/j.ecolind.2021.108328 |
[28] |
Li F., Ye Y.P., Song B.W., et al., 2014. Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples’ Republic of China, 1991-2006. Ecol. Indic. 42, 95-103.
doi: 10.1016/j.ecolind.2013.11.012 |
[29] |
Li F., Zhang S.W., Yang J.C., et al., 2018. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 31, 12-20.
doi: 10.1016/j.ecoser.2018.03.009 |
[30] |
Li L.M., Tang H.N., Lei J.R., et al., 2022. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 137, 108727, doi: 10.1016/j.ecolind.2022.108727.
doi: 10.1016/j.ecolind.2022.108727 |
[31] | Li X.K., Wang X.M., Lei L., 2020. The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance. Eng. Constr. Archit. Ma. 27(2), 356-384. |
[32] | Li Y.R., Cao Z., Long H.L., et al., 2017. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 142, 697-715. |
[33] |
Liu H.M., Fang C.L., Fang K., 2020. Coupled human and natural cube: A novel framework for analyzing the multiple interactions between humans and nature. J. Geogr. Sci. 30(3), 355-377.
doi: 10.1007/s11442-020-1732-9 |
[34] |
Liu J., Dietz T., Carpenter S.R., et al., 2007. Complexity of coupled human and natural systems. Science. 317, 1513-1516.
doi: 10.1126/science.1144004 pmid: 17872436 |
[35] |
Liu Y. S., 2018. Introduction to land use and rural sustainability in China. Land Use Pol. 74, 1-4.
doi: 10.1016/j.landusepol.2018.01.032 |
[36] |
Long X.R., Lin H., An X.X., et al., 2022. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Indic. 136, 108619, doi: 10.1016/j.ecolind.2022.108619.
doi: 10.1016/j.ecolind.2022.108619 |
[37] |
McKenzie T., Normand L., Iwanycki N., et al., 2018. Assessing the utility of a novel terrestrial biodiversity quality indicator with 10 years of monitoring data. Ecol. Indic. 85, 422-431.
doi: 10.1016/j.ecolind.2017.09.049 |
[38] | MNR Ministry of Natural Resources, 2018. 2017 Bulletin on Land, Mineral and Marine Resources in China.[2023-02-28].http://gi.mnr.gov.cn/201805/t201805181776792.html. (in Chinese) |
[39] |
Nguyen H.Q., Warr P., 2020. Land consolidation as technical change: Economic impacts in rural Vietnam. World Dev. 127, 104750, doi: 10.1016/j.worlddev.2019.104750.
doi: 10.1016/j.worlddev.2019.104750 |
[40] |
Niquisse S., Cabral P., 2018. Assessment of changes in ecosystem service monetary values in Mozambique. Environ. Dev. 25, 12-22.
doi: 10.1016/j.envdev.2017.09.003 |
[41] |
Pan Y., Gong H.L., Zhou D.M., et al., 2011. Impact of land use change on groundwater recharge in Guishui River Basin, China. Chin. Geogra. Sci. 21(6), 734-743.
doi: 10.1007/s11769-011-0508-7 |
[42] |
Pašakarnis G., Morley D., Malienė V., 2013. Rural development and challenges establishing sustainable land use in Eastern European countries. Land Use Pol. 30, 703-710.
doi: 10.1016/j.landusepol.2012.05.011 |
[43] |
Peng F., Wang Y.L., Li W.F., et al., 2006. Evaluation for sustainable land use in coastal areas: A landscape ecological prospect. Int. J. Sust. Dev. World. 13(1), 25-36.
doi: 10.1080/13504500609469659 |
[44] |
Peng J., Wang Y.L., Wu J.S., et al., 2007. Evaluation for sustainable land use in mountain areas of Northwestern Yunnan Province, China. Environ. Monit. Assess. 133, 407-415.
pmid: 17286168 |
[45] |
Potschin M., 2009. Land use and the state of the natural environment. Land Use Pol. 26, S170-S177.
doi: 10.1016/j.landusepol.2009.08.008 |
[46] |
Pukowiec-Kurda K., 2022. The urban ecosystem services index as a new indicator for sustainable urban planning and human well-being in cities. Ecol. Indic. 144, 109532, doi: 10.1016/j.ecolind.2022.109532.
doi: 10.1016/j.ecolind.2022.109532 |
[47] |
Qiu H.H., Hu B.Q., Zhang Z., 2021. Impacts of land use change on ecosystem service value based on SDGs report—Taking Guangxi as an example. Ecol. Indic. 133, 108366, doi: 10.1016/j.ecolind.2021.108366.
doi: 10.1016/j.ecolind.2021.108366 |
[48] |
Rao Y.X., Zhou M., Ou G.L., et al., 2018. Integrating ecosystem services value for sustainable land-use management in semiarid region. J. Clean. Prod. 186, 662-672.
doi: 10.1016/j.jclepro.2018.03.119 |
[49] |
Reyers B., O’Farrell P.J., Cowling R.M., et al., 2009. Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot. Ecol. Soc. 14(1), 38, doi: ecologyandsociety.org/vol14/iss1/art38/.
doi: ecologyandsociety.org/vol14/iss1/art38/ |
[50] | Rindfuss R.R., Walsh S.J., Turner B.L., et al., 2004. Developing a science of land change: Challenges and methodological issues. Proceedings of the National Academy of Sciences. 101, 13976-13981. |
[51] |
Salaisook P., Faysse N., Tsusaka T.W., 2020. Reasons for adoption of sustainable land management practices in a changing context: A mixed approach in Thailand. Land Use Pol. 96, 104676, doi: 10.1016/j.landusepol.2020.104676.
doi: 10.1016/j.landusepol.2020.104676 |
[52] |
Sannigrahi S., Pilla F., Zhang Q., et al., 2021. Examining the effects of green revolution led agricultural expansion on net ecosystem service values in India using multiple valuation approaches. J. Environ. Manage. 277, 111381, doi: 10.1016/j.jenvman.2020.111381.
doi: 10.1016/j.jenvman.2020.111381 |
[53] |
Sannigrahi S., Zhang Q., Joshi P.K., et al., 2020. Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region. J. Clean. Prod. 257, 120424, doi: 10.1016/j.jclepro.2020.120424.
doi: 10.1016/j.jclepro.2020.120424 |
[54] |
Shi T., Yang S.Y., Zhang W., et al., 2020. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 244, 118739, doi: 10.1016/j.jclepro.2019.118739.
doi: 10.1016/j.jclepro.2019.118739 |
[55] |
Sikor T., Müller D., Stahl J., 2009. Land fragmentation and cropland abandonment in Albania: Implications for the roles of state and community in postsocialist land consolidation. World Dev. 37, 1411-1423.
doi: 10.1016/j.worlddev.2008.08.013 |
[56] |
Smyth A.J., Dumanski J., 1995. A framework for evaluating sustainable land management. Can. J. Soil Sci. 75, 401-406.
doi: 10.4141/cjss95-059 |
[57] |
Sonter L.J., Moran C.J., Barrett D.J., et al., 2014. Processes of land use change in mining regions. J. Clean. Prod. 84, 494-501.
doi: 10.1016/j.jclepro.2014.03.084 |
[58] |
Su K., Wei D.Z., Lin W.X., 2020. Evaluation of ecosystem services value and its implications for policy making in China—A case study of Fujian Province. Ecol. Indic. 108, 105752, doi: 10.1016/j.ecolind.2019.105752.
doi: 10.1016/j.ecolind.2019.105752 |
[59] |
Sun X., Li Y.F., Zhu X.D., et al., 2017. Integrative assessment and management implications on ecosystem services loss of coastal wetlands due to reclamation. J. Clean. Prod. 163, S101-S112.
doi: 10.1016/j.jclepro.2015.10.048 |
[60] |
Tolessa T., Senbeta F., Abebe T., 2016. Land use/land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. Forests, Trees and Livelihoods. 26(2), 111-123.
doi: 10.1080/14728028.2016.1221780 |
[61] |
Tolessa T., Senbeta F., Kidane M., 2017. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 23, 47-54.
doi: 10.1016/j.ecoser.2016.11.010 |
[62] |
Tran T.Q., Vu H.V., 2019. Land fragmentation and household income: First evidence from rural Vietnam. Land Use Pol. 89, 104247, doi: 10.1016/j.landusepol.2019.104247.
doi: 10.1016/j.landusepol.2019.104247 |
[63] | Tsiaras S., Samara T., Spanos I., 2017. Exploring linkages among land use/land cover change, ecological footprint and sustainable development. J. Environ. Prot. Ecol. 18(3), 879-888. |
[64] | UNEP United Nations Environment Programme, 2014. Assessing Global Land Use: Balancing Consumption with Sustainable Supply.[2023-01-15].https://www.unenvironment.org/resources/report/assessing-global-land-use-balancing-consumption-sustainable-supply-0. |
[65] |
van Dijk T., Kopeva D., 2006. Land banking and Central Europe: future relevance, current initiatives, Western European past experience. Land Use Pol. 23(3), 286-301.
doi: 10.1016/j.landusepol.2004.07.005 |
[66] |
Wang X.C., Dong X.B., Liu H.M., et al., 2017. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 27, 113-123.
doi: 10.1016/j.ecoser.2017.08.013 |
[67] |
Wang Y.M., Zhang Z.X., Chen X., 2022. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 144, 109514, doi: 10.1016/j.ecolind.2022.109514.
doi: 10.1016/j.ecolind.2022.109514 |
[68] |
Wang Z.M., Zhang B., Zhang S.Q., et al., 2006. Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environ. Monit. Assess. 112, 69-91.
doi: 10.1007/s10661-006-0312-5 pmid: 16404535 |
[69] |
Wellmann T., Haase D., Knapp S., et al., 2018. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 85, 190-203.
doi: 10.1016/j.ecolind.2017.10.029 |
[70] |
Wu K.Y., Ye X.Y., Qi Z.F., et al., 2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services the case of fast-growing Hangzhou metropolitan area, China. Cities. 31, 276-284.
doi: 10.1016/j.cities.2012.08.003 |
[71] |
Xie G.D., Zhen L., Lu C.X., et al., 2008. Expert knowledge based valuation method of ecosystem services in China. Journal of Natural Resources. 23(5), 911-919. (in Chinese)
doi: 10.11849/zrzyxb.2008.05.019 |
[72] |
Xie G.D., Zhang C.X., Zhen L., et al., 2017. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 26, 146-154.
doi: 10.1016/j.ecoser.2017.06.010 |
[73] |
Xie H.L., He Y.F., Xie X., 2017. Exploring the factors influencing ecological land change for China’s Beijing-Tianjin-Hebei Region using big data. J. Clean. Prod. 142, 677-687.
doi: 10.1016/j.jclepro.2016.03.064 |
[74] |
Xie L., Wang H.W., Liu S.H., 2022. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 138, 108828, doi: 10.1016/j.ecolind.2022.108828.
doi: 10.1016/j.ecolind.2022.108828 |
[75] |
Xue M.G., Ma S.H., 2018. Optimized land-use scheme based on ecosystem service value: Case study of Taiyuan, China. J. Urban Plann. Dev. 144(2), 04018016, doi: 10.1061/(ASCE)UP.1943-5444.0000447.
doi: 10.1061/(ASCE)UP.1943-5444.0000447. |
[76] |
Yamashita R., Hoshino S., 2018. Development of an agent-based model for estimation of agricultural land preservation in rural Japan. Agr. Syst. 164, 264-276.
doi: 10.1016/j.agsy.2018.05.004 |
[77] |
You W.B., Ji Z.R., Wu L.Y., et al., 2017. Modeling changes in land use patterns and ecosystem services to explore a potential solution for meeting the management needs of a heritage site at the landscape level. Ecol. Indic. 73, 68-78.
doi: 10.1016/j.ecolind.2016.09.027 |
[78] |
Yu G.M., Li M.X., Tu Z.F., et al., 2018. Conjugated evolution of regional social-ecological system driven by land use and land cover change. Ecol. Indic. 89, 213-226.
doi: 10.1016/j.ecolind.2018.01.065 |
[79] |
Zantsi S., Pienaar L.P., Greyling J.C., 2021. A typology of emerging farmers in three rural provinces of South Africa: what are the implications for the land redistribution policy? Int. J. Soc. Econ. 48, 724-747.
doi: 10.1108/IJSE-10-2020-0728 |
[80] |
Zhang H., Wang Y.W., Wang C., et al., 2022. Coupling analysis of environment and economy based on the changes of ecosystem service value. Ecol. Indic. 144, 109524, doi: 10.1016/j.ecolind.2022.109524.
doi: 10.1016/j.ecolind.2022.109524 |
[81] |
Zhang J.J., Fu M.C., Zeng H., et al., 2013. Variations in ecosystem service values and local economy in response to land use: A case study of Wu’an, China. Land Degrad. Dev. 24(3), 236-249.
doi: 10.1002/ldr.v24.3 |
[82] | Zhang M.Y., Wang K.L., Liu H.Y., et al., 2018. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. J. Clean. Prod. 183, 831-842. |
[83] |
Zhang Q.B., Yue D.P., Fang M.Z., et al., 2018. Study on sustainability of land resources in Dengkou County based on emergy analysis. J. Clean. Prod. 171, 580-591.
doi: 10.1016/j.jclepro.2017.09.275 |
[84] |
Zhang X.S., Ren W., Peng H.J., 2022. Urban land use change simulation and spatial responses of ecosystem service value under multiple scenarios: A case study of Wuhan, China. Ecol. Indic. 144, 109526, doi: 10.1016/j.ecolind.2022.109526.
doi: 10.1016/j.ecolind.2022.109526 |
[85] |
Zhang Y.N., Long H.L., Tu S.S., et al., 2019. Spatial identification of land use functions and their tradeoffs/synergies in China: Implications for sustainable land management. Ecol. Indic. 107, 105550, doi: 10.1016/j.ecolind.2019.105550.
doi: 10.1016/j.ecolind.2019.105550 |
[86] |
Zhang Z.P., Xia F.Q., Yang D.G., et al., 2020. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 110, 105826, doi: 10.1016/j.ecolind.2019.105826.
doi: 10.1016/j.ecolind.2019.105826 |
[87] |
Zhao Y.L., Shi Y., Feng C.C., et al., 2022. Exploring coordinated development between urbanization and ecosystem services value of sustainable demonstration area in China-take Guizhou Province as an example. Ecol. Indic. 144, 109444, doi: 10.1016/j.ecolind.2022.109444.
doi: 10.1016/j.ecolind.2022.109444 |
[88] |
Zhou D., Zhang R.Q., Liu L.M., et al., 2009. Evaluation of the sustainable land use status of the North China Plain. Int. J. Sust. Dev. World. 16(4), 253-259.
doi: 10.1080/13504500903020389 |
[89] | Zhuang D.F., Liu J.Y., 1997. Study on the model of regional differentiation of land use degree in China. Journal of Natural Resources. 12(2), 105-111. (in Chinese) |
[1] | QIU Luyi, Sharina OSMAN, HUA Yidi. Coupling coordinated development among digital economy, regional innovation, and talent employment: A case study in the Hangzhou Metropolitan Circle, China [J]. Regional Sustainability, 2024, 5(1): 100115-. |
[2] | Qiong LI, Yang ZHAO, Songlin LI, Lanlan ZHANG. Spatial-temporal characteristics of the coupling coordination of social security and economic development in China during 2002-2018 [J]. Regional Sustainability, 2021, 2(2): 116-129. |
[3] | Lingxiao Sun, Xiang Yu, Boshan Li, Haiyan Zhang, Dong Sha, Yao Wang, Jiaqiang Lei, Yang Yu, Martin Welp, Ruide Yu. Coupling analysis of the major impact on sustainable development of the typical arid region of Turpan in Northwest China [J]. Regional Sustainability, 2020, 1(1): 48-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||