Regional Sustainability ›› 2021, Vol. 2 ›› Issue (2): 164-176.doi: 10.1016/j.regsus.2021.06.002cstr: 32279.14.j.regsus.2021.06.002
• Full Length Article • Previous Articles Next Articles
Mrinmay MANDAL*(), Nilanjana Das CHATTERJEE
Received:
2020-11-17
Revised:
2021-04-06
Accepted:
2021-06-18
Published:
2021-04-20
Online:
2021-08-13
Contact:
Mrinmay MANDAL
E-mail:mrinmaymandal88@gmail.com
Mrinmay MANDAL, Nilanjana Das CHATTERJEE. Forest landscape and its ecological quality: a stepwise spatiotemporal evaluation through patch-matrix model in Jhargram District, West Bengal State, India[J]. Regional Sustainability, 2021, 2(2): 164-176.
Table 1
Landscape ecological indices used in patch-matrix model (McGarigal and Marks, 1995)."
Landscape ecological pattern | Index | Method | Description | Unit | Range | Ecological importance |
---|---|---|---|---|---|---|
Dominance | LPI | aij=area (m2) of patch ij class; A=total landscape area (m2) | % | 0<LPI≤100 | Patch dominance over the landscape (the higher the value, the higher the importance) | |
MCA | hm2 | ≥0, without limit | Amount of patch class core from entire the landscape (the higher the value, the higher the importance) | |||
MPS | aij=area (m2) of patch ij class; ni | hm2 | ≥0, without limit | Nature of patch class size from entire the landscape (the higher the value, the higher the importance) | ||
TCAI | % | 0<TCAI≤100 | Patch class core dominance over the landscape (the higher the value, the higher the importance) | |||
Fragmentation | TEI | Sum of perimeter of all corresponding patches | m | ≥0, without limit | Amount of patch class perimeter (the higher the value, the lower the importance) | |
EDI | eik=total length (m) of edge in the landscape involving patch type (class) i; A=total landscape area (m2) | m/hm2 | ≥0, without limit | Patch class edge proportion to the total patch area (the higher the value, the lower the importance) | ||
AWMSI | pij=perimeter (m) of patch ij; aij=area (m2) of patch ij; ni=number of patches in the landscape of patch type (class) i | - | ≥1, without limit | Patch class shape complexity of entire the landscape (higher the value, lower the importance) | ||
AWMPFD | aij=area (m2) of patch ij; pij=perimeter (m) of patch ij; ni=number of patches in the landscape of patch type (class) i | - | 1<AWMPFD≤2 | Fractal nature of the patch class of entire the landscape (higher the value, lower the importance) | ||
Connectivity | MNN | hij=distance from ij to a nearest neighboring patch of the same type (class) i, based on patch edge-to-edge distance; ni=number of patches in the landscape of patch type (class) i | m | ≥0, without limit | Distance between nearest single class patch (the higher the value, the lower the importance) | |
MPI | aijs=area (m2) of patch ijs within the specified neighborhood (m) of the patch ij; hijs=distance (m) between patch ijs and patch ijs, based on patch edge-to-edge distance | - | ≥0, without limit | Compactness of single class patch (the higher the value, the higher the importance) |
Table 2
Variations of ecological indices of forest cover class in Jhargram District from 1985 to 2015."
Ecological pattern | Index | Unit | Forest class of 1985 | Forest class of 2015 | Comparative value between 1985 and 2015 | Ecological significance |
---|---|---|---|---|---|---|
Dominance | LPI | % | 5.18 | 5.35 | +0.15 | Positive |
MCA | hm2 | 126.15 | 143.24 | +17.09 | Positive | |
MPS | hm2 | 274.37 | 298.31 | +23.94 | Positive | |
TCAI | % | 40.17 | 42.83 | +2.66 | Positive | |
Fragmentation | TEI | ×106 m | 2.33 | 2.39 | +0.06 | Negative |
EDI | m/hm2 | 30.68 | 28.87 | -1.81 | Positive | |
AWMSI | - | 1.99 | 1.98 | -0.01 | Positive | |
AWMPFD | - | 1.08 | 1.08 | 0.00 | None | |
Connectivity | MNN | m | 761.20 | 740.70 | -20.50 | Positive |
MPI | - | 15.18 | 19.38 | +4.20 | Positive |
Table 3
Comparison matrix of correlations between grid wise forest cover and selected ecological indices in Jhargram District in 1985 and 2015."
Ecological pattern | Index | Unit | r | Correlation coefficient (r) difference between 1985 and 2015 | Ecological significance | |
---|---|---|---|---|---|---|
1985 | 2015 | |||||
Dominance | MCA | hm2 | 0.692 | 0.694 | +0.002 | Positive |
MPS | hm2 | 0.832 | 0.853 | +0.021 | Positive | |
TCAI | % | 0.845 | 0.856 | +0.011 | Positive | |
Fragmentation | EDI | m/hm2 | 0.880 | 0.874 | -0.006 | Negative |
AWMSI | - | 0.670 | 0.652 | -0.018 | Positive | |
AWMPFD | - | 0.618 | 0.604 | -0.014 | Positive | |
Connectivity | MPI | - | 0.408 | 0.500 | +0.092 | Positive |
MNN | m | -0.154 | -0.164 | -0.010 | Positive |
[1] | Arroyo-Rodríguez V., Melo F.P.L., Martínez-Ramos M., et al., 2017. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol. Rev. 92(1), 326-340. |
[2] |
Bouaziz M., Eisold S., Guermazi E., 2017. Semiautomatic approach for land cover classification: a remote sensing study for arid climate in south eastern Tunisia. Euro-Mediterranean Journal for Environmental Integration. 2, 24. doi:10.1007/s41207-017-0036-7.
doi: 10.1007/s41207-017-0036-7 |
[3] |
Bovendorp R.S., Brum F.T., McCleery R.A., et al., 2019. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography. 42(1), 23-35.
doi: 10.1111/ecog.03504 |
[4] |
Chazdon R.L., Guariguata M.R., 2016. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica. 48(6), 716-730.
doi: 10.1111/btp.2016.48.issue-6 |
[5] |
Crouzeilles R., Ferreira M.S., Chazdon R.L., et al., 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3(11), e1701345. doi:10.1126/sciadv.1701345.
doi: 10.1126/sciadv.1701345 |
[6] |
Cushman S.A., 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol. Conserv. 128(2), 231-240.
doi: 10.1016/j.biocon.2005.09.031 |
[7] | Das Chatterjee N., Chatterjee S., 2014. Changing habitat and elephant migration from Dalma Wildlife Sanctuary, Jharkhand to Panchetforest division, Bankura, West Bengal: A biogeographical analysis. In: Singh, M., Singh, R.B., Hassan, M.I., (eds). Climate Change and Biodiversity. Advances in Geographical and Environmental Sciences. Tokyo: Springer, 209-222. |
[8] | Das Chattarjee N., 2016. Man-Elephant Conflict: A Case Study from Forests in West Bengal, India.Cham:Springer International Publishing, 1-179. |
[9] | Das D., Ghosh P., 2014. Ecological studies of ecosystem health indicators at Nayagram of Paschim Medinipur district in lateritic forests of Southwest Bengal, India. IOSR Journal of Environmental Science, Toxicology and Food Technology. 8(6), 48-63. |
[10] | Das G.K., Das R., 2016. Mapping of the forest cover based on multi-criteria analysis: A case study on Jhargram sector in Paschim Medinipur District. International Journal of Science and Research. 5(8), 492-499. |
[11] | Dramstad W.E., Olson J.D., Forman R.T.T., 1996. Landscape Ecology Principle in Landscape Architecture and Land-use Planning. Washington DC:Island Press, 1-80. |
[12] |
Dutta S., Dutta I., Das A., et al., 2020. Quantification and mapping of fragmented forest landscape in dry deciduous forest of Burdwan forest division, West Bengal, India. Trees, Forests and People. 2, 100012. doi:10.1016/j.tfp.2020.100012.
doi: 10.1016/j.tfp.2020.100012 |
[13] |
Fahrig L., 2013. Rethinking patch size and isolation effects: the habitat amount hypojournal. J. Biogeogr. 40(9), 1649-1663.
doi: 10.1111/jbi.12130 |
[14] | Farina A., 2008. Principles and Methods in Landscape Ecology: Towards a Science of the Landscape. Dordrecht: Springer Netherlands, 1-412. |
[15] | Forman R.T.T., 1995. Land Mosaic: the Ecology of Landscape and Regions.Cambridge:Cambridge University Press, 1-656. |
[16] |
Frazier A.E., Kedron P., 2017. Landscape metrics: past progress and future directions. Current Landscape Ecology Reports. 2, 63-72.
doi: 10.1007/s40823-017-0026-0 |
[17] |
Frazier A.E., 2019. Emerging trajectories for spatial pattern analysis in landscape ecology. Landsc. Ecol. 34, 2073-2082.
doi: 10.1007/s10980-019-00880-1 |
[18] |
Gardiner R., Bain G., Hamer R., et al., 2018. Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landsc. Ecol. 33, 1837-1849.
doi: 10.1007/s10980-018-0722-0 |
[19] |
Garmendia A., Arroyo-Rodríguez V., Estrada A., et al., 2013. Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J. Trop. Ecol. 29, 331-344.
doi: 10.1017/S0266467413000370 |
[20] |
Geri F., Rocchini D., Chiarucci A., 2010. Landscape metrics and topographical determinants of large-scale forest dynamics in a Mediterranean landscape. Landsc. Urban Plan. 95(1-2), 46-53.
doi: 10.1016/j.landurbplan.2009.12.001 |
[21] | Guha M., 2017. Human-elephant conflict in South West Bengal-I: Study on fodder plants of the elephants of dalma herd. The Journal of Economy, Environment and Society. 2(1), 22-27. |
[22] | Gülçin D., Yilmaz K.T., 2020. Evaluation of forest fragmentation with particular reference to landscape-based ecological assessment and wildlife conservation. Turkish Journal of Forestry. 21(1), 84-93. |
[23] |
Gupta B., Mishra T.K., 2019. Analysis of tree diversity and factors affecting natural regeneration in fragmented dry deciduous forests of lateritic West Bengal. Trop. Ecol. 60, 405-414.
doi: 10.1007/s42965-019-00039-8 |
[24] |
Gustafson E.J., Parker G.R., 1994. Using an index of habitat patch proximity for landscape design. Landsc. Urban Plan. 29(2-3), 117-130.
doi: 10.1016/0169-2046(94)90022-1 |
[25] | Gutzwiller K.J., 2002. Applying Landscape Ecology in Biological Conservation. New York: Springer Science & Business Media, 1-497. |
[26] |
Kedron P.J., Frazier A.E., Ovando-Montejo G.A., et al., 2018. Surface metrics for landscape ecology: A comparison of landscape models across ecoregions and scales. Landsc. Ecol. 33, 1489-1504.
doi: 10.1007/s10980-018-0685-1 |
[27] | Khatua T., Ray D., Patra S., 2020. A comprehensive study of avifaunal diversity in Jhargram District. Journal of Indian Association for Environmental Management. 40(1), 16-24. |
[28] | Lamine S., Petropoulos G.P., Singh S.K., et al., 2018. Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS. GeocartoInt. 33(8), 862-878. |
[29] |
Lindborg R., Plue J., Andersson K., et al., 2014. Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol. Conserv. 169, 206-213.
doi: 10.1016/j.biocon.2013.11.015 |
[30] | Lindenmayer D.B., Fischer J., 2006. Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis.Washington DC:Island Press, 1-352. |
[31] | Lovell S.T., Johnston D.M., 2009. Designing landscapes for performance based on emerging principles in landscape ecology. Ecol. Soc. 14(1), 44. doi:10.5751/ES-02912-140144. |
[32] | MacArthur R.H., Wilson E.O., 1967. The Theory of Island Biogeography. Princeton:Princeton University Press, 1-215. |
[33] |
Magioli M., Moreira M.Z., Fonseca R.C.B., et al., 2019. Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. U. S. A. 116(37), 18466-18472.
doi: 10.1073/pnas.1904384116 |
[34] | Mandal M., Das Chattarjee N., 2018. Quantification of habitat (forest) shape complexity through geo-spatial analysis: An ecological approach in Panchet forest division in Bankura, West Bengal. Asian Journal of Environment & Ecology. 6(1), 1-8. |
[35] | Mandal M., Das Chattarjee N., 2019. Forest core demarcation using geo-spatial techniques: A habitat management approach in Panchet forest division, Bankura, West Bengal, India. Asian Journal of Geographical Research. 2(2), 1-8. |
[36] | Mandal M., Das Chattarjee N., 2020a.Spatial alteration of fragmented forest landscape for improving structural quality of habitat: a case study from Radhanagar forest range, Bankura District, West Bengal, India. Geology, Ecology, and Landscapes. doi:10.1080/24749508.2020.1720483. |
[37] | Mandal M., Das Chattarjee N., 2020b.Geo-Statistical Analysis to Understand Nature of Forest Patch Shape Complexity in Panchet Forest Division under Bankura District, West Bengal. Indian Journal of Ecology. 47(1), 96-101. |
[38] | Mandal M., Das Chattarjee N., 2020c.Land use alteration strategy to improve forest landscape structural quality in Radhanagar forest range under Bankura district. Eurasian Journal of Forest Science. 8(1), 1-10. |
[39] |
Mandal M., Das Chattarjee N., 2020d.Elephant’s habitat suitability assessment through geo spatial quantification in Panchet forest division, West Bengal. Ecofeminism and Climate Change. 1(3), 127-140.
doi: 10.1108/EFCC-05-2020-0012 |
[40] | McGarigal K., Marks B.J., 1995. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Gen. Tech. Rep. PNW-GTR-351. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 1-122. |
[41] | McIntosh A.R., McHugh P.A., Plank M.J., et al., 2018. Capacity to support predators scales with habitat size. Sci. Adv. 4(7), eaap7523. doi:10.1126/sciadv.aap7523. |
[42] |
Mortelliti A., Fagiani S., Battisti C., et al., 2010. Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Divers. Distrib. 16(6), 941-951.
doi: 10.1111/ddi.2010.16.issue-6 |
[43] | Naveh Z., Lieberman A.S., 2013. Landscape Ecology: Theory and Application. New York: Springer-Verlag, 1-356. |
[44] |
Niemeyer J., Barros F.S.M., Silva D.S., et al., 2020. Planning forest restoration within private land holdings with conservation co-benefits at the landscape scale. Sci. Total Environ. 717, 135262. doi:10.1016/j.scitotenv.2019.135262.
doi: 10.1016/j.scitotenv.2019.135262 |
[45] | O’Hara K., 2014. Multiaged silviculture: Managing for complex forest stand structures.Oxford:Oxford University Press, 1-240. |
[46] | O’Malley L.S.S., 1914. Bengal District Gazetteers. Calcutta: Bengal Secretariat Book Depot. |
[47] |
Padalia H., Ghosh S., Reddy C.S., et al., 2020. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191(Suppl.3), 802. doi:10.1007/s10661-019-7696-5.
doi: 10.1007/s10661-019-7696-5 |
[48] |
Pal M., Mather P.M., 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Futur. Gener. Comp. Syst. 20(7), 1215-1225.
doi: 10.1016/j.future.2003.11.011 |
[49] |
Pal M., Mather P.M., 2005. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26(5), 1007-1011.
doi: 10.1080/01431160512331314083 |
[50] |
Palmero-Iniesta M., Espelta J.M., Gordillo J., et al., 2020. Changes in forest landscape patterns resulting from recent afforestation in Europe (1990-2012): defragmentation of pre-existing forest versus new patch proliferation. Ann. For. Sci. 77, 43. doi:10.1007/s13595-020-00946-0.
doi: 10.1007/s13595-020-00946-0 |
[51] |
Paluch J.G., 2007. The spatial pattern of a natural European beech (Fagus sylvatica L.) -silver fir (Abies alba Mill.) forest: Apatch-mosaic perspective. For. Ecol. Manage. 253(1-3), 161-170.
doi: 10.1016/j.foreco.2007.07.013 |
[52] |
Pan Y., Birdsey R.A., Phillips O.L., et al., 2013. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593-622.
doi: 10.1146/annurev-ecolsys-110512-135914 |
[53] | Pandit P.K., Chanda S., 2019. Human-Elephant Conflict and its Possible Control Measures in South West Bengal Land Scape, India. Indian Forester. 145(10), 911-920. |
[54] |
Paudel S., Yuan F., 2012. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int. J. Appl. Earth Obs. Geoinf. 16, 66-76.
doi: 10.1016/j.jag.2011.12.003 |
[55] |
Piña T.E.N., Carvalho W.D., Rosalino L.M.C., et al., 2019. Drivers of mammal richness, diversity and occurrence in heterogeneous landscapes composed by plantation forests and natural environments. For. Ecol. Manage. 449, 117467. doi:10.1016/j.foreco.2019.117467.
doi: 10.1016/j.foreco.2019.117467 |
[56] | Ramachandra T.V., Setturu B., Vinay S., et al.,2018. Conservation and sustainable management of local hotspots of biodiversity. In: Geospatial Infrastructure, Applications and Technologies: India Case Studies. Singapore: Springer, 365-383. |
[57] | Randolph J., 2004. Environmental Land Use Planning and Management. Seattle:Island Press, 1-664. |
[58] |
Sarker D., Das N., 2006. Towards a sustainable joint forest management programme: Evidence from Western Midnapore Division in West Bengal. South Asia Research. 26(3), 269-289.
doi: 10.1177/0262728006071708 |
[59] |
Shen Z.H., Li Y.Y., Yang K., et al., 2019. The emerging cross-disciplinary studies of landscape ecology and biodiversity in China. J. Geogr. Sci. 29(7), 1063-1080.
doi: 10.1007/s11442-019-1645-7 |
[60] | Singh A.K., Singh R.R., Chowdhury S., 2002. Human-elephant conflicts in changed landscapes of south West Bengal, India. Indian Forester. 128(10), 1119-1132. |
[61] | Sirami C., 2016. Biodiversity in heterogeneous and dynamic landscapes. In: Oxford Research Encyclopedia of Environmental Science. Oxford: Oxford University Press. |
[62] |
Skidmore A.K., Franklin J., Dawson T.P., et al., 2011. Geospatial tools address emerging issues in spatial ecology: A review and commentary on the special issue. Int. J. Geogr. Inf. Sci. 25, 337-365.
doi: 10.1080/13658816.2011.554296 |
[63] |
Smits P.C., Dellepiane S.G., Schowengerdt R.A., 2010. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 20(8), 1461-1486.
doi: 10.1080/014311699212560 |
[64] | Sudhakar R., Raha A.K., 1994. Forest change detection study of nine districts of West Bengal through digital image processing of Indian Remote Sensing Satiate data between 1988 & 1991—Procedural Manual and Inventory. Regional Remote Sensing Service Center, Kharagpur and Forest Department, Government of West Bengal Joint Collaborating Project. Kharagpur, India. |
[65] |
Termorshuizen J.W., Opdam P., 2009. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 24, 1037-1052.
doi: 10.1007/s10980-008-9314-8 |
[66] |
Turner M.G., 2005. Landscape ecology: what is the state of the science?Annu. Rev. Ecol. Evol. Syst. 36, 319-344.
doi: 10.1146/annurev.ecolsys.36.102003.152614 |
[67] |
Velázquez J., Gutiérrez J., Hernando A., et al., 2018. Measuring mosaic diversity based on land use map in the region of Madrid, Spain. Land Use Pol. 71, 329-334.
doi: 10.1016/j.landusepol.2017.12.007 |
[68] |
Wheatley M., 2010. Domains of scale in forest-landscape metrics: implications for species-habitat modeling. Acta Oecologica. 36(2), 259-267.
doi: 10.1016/j.actao.2009.12.003 |
[1] | HAO Yun, WU Miao, ZHANG Xiaoyun, WANG Lixian, HE Jingjing. Research on the implementation of the Convention on Biological Diversity among the Shanghai Cooperation Organisation countries [J]. Regional Sustainability, 2023, 4(3): 322-331. |
[2] | Angelo Rellama AGDUMA, Francisco Gil GARCIA, Ma. Teodora CABASAN, Jonald PIMENTEL, Renee Jane ELE, Meriam RUBIO, Sedra MURRAY, Bona Abigail HILARIO-HUSAIN, Kier Celestial Dela CRUZ, Sumaira ABDULLAH, Shiela Mae BALASE, Krizler Cejuela TANALGO. Overview of priorities, threats, and challenges to biodiversity conservation in the southern Philippines [J]. Regional Sustainability, 2023, 4(2): 203-213. |
[3] | Honghu MENG, Xiaoyang GAO, Yigang SAONG, Guanlong CAO, Jie LI. Biodiversity arks in the Anthropocene [J]. Regional Sustainability, 2021, 2(2): 109-115. |
[4] | Yuanming Zhang, Daoyuan Zhang, Wenjun Li, Yaoming Li, Chi Zhang, Kaiyun Guan, Borong Pan. Characteristics and utilization of plant diversity and resources in Central Asia [J]. Regional Sustainability, 2020, 1(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||