Regional Sustainability ›› 2024, Vol. 5 ›› Issue (1): 100113.doi: 10.1016/j.regsus.2024.03.007cstr: 32279.14.j.regsus.2024.03.007
• Full Length Article • Previous Articles Next Articles
Andi Rachmat ARFADLYa,*(), Hazairin ZUBAIRb, MAHYUDDINb, Andang Suryana SOMAb
Received:
2023-01-29
Accepted:
2024-03-04
Published:
2024-03-30
Online:
2024-04-30
Contact:
E-mail address: Andi Rachmat ARFADLY, Hazairin ZUBAIR, MAHYUDDIN, Andang Suryana SOMA. Socio-economic vulnerability level in the Jeneberang watershed in Gowa Regency, South Sulawesi Province, Indonesia[J]. Regional Sustainability, 2024, 5(1): 100113.
Table 1
Description of socio-economic vulnerability variables."
Variable | Description | Reference | ||
---|---|---|---|---|
Social vulnerability | Population density | The higher the population density, the higher the vulnerability. | Nguyen et al. ( | |
Vulnerable groups | Disabled people | The higher the number of disabled people, the higher the vulnerability. | Nguyen et al. ( | |
Elderly people (above 65 years old) | The higher the elderly people, the higher the vulnerability. | Nguyen et al. ( | ||
Young people (0-14 years old) | The higher the number of young people, the higher the vulnerability. | Nguyen et al. ( | ||
Road network and settlement | The closer the watershed to the settlement, the higher the vulnerability. | Nguyen et al. ( | ||
Economic vulnerability | Percentage of poor people | The higher the percentage of poor people, the higher the vulnerability. | Pandey et al. ( | |
Productive land area | The more productive land area, the higher the vulnerability. | Nguyen et al. ( |
Table 2
Weight of social vulnerability variables."
Variable | Class | Weight |
---|---|---|
Population density | Low (<1000 persons/hm2) | 1 |
Medium (1000-2000 persons/hm2) | 2 | |
High (>2000 persons/hm2) | 3 | |
Percentage of vulnerable groups (disabled people, elderly people, and young people) | Low (<5.00%) | 1 |
Medium (5.00%-10.00%) | 2 | |
High (>10.00%) | 3 | |
Road network and settlement | Low (<75 km) | 1 |
Medium (75-150 km) | 2 | |
High (>150 km) | 3 |
Table 4
Vulnerable groups of 12 districts in the Jeneberang watershed."
District | Number of disabled people (persons) | Number of elderly people (persons) | Number of young people (persons) | Total vulnerable group (persons) | Weight |
---|---|---|---|---|---|
Bajeng | 272 | 1724 | 6895 | 8891 | 1 |
Barombong | 125 | 2219 | 12,386 | 14,730 | 1 |
Bontolempangan | 91 | 1161 | 2910 | 4162 | 1 |
Bontomarannu | 83 | 2287 | 11,038 | 13,408 | 1 |
Bungaya | 118 | 1095 | 3503 | 4716 | 1 |
Manuju | 33 | 1204 | 3160 | 4397 | 1 |
Pallangga | 309 | 6307 | 33,522 | 40,138 | 3 |
Parangloe | 78 | 1210 | 5843 | 5843 | 1 |
Parigi | 109 | 1473 | 2487 | 2487 | 1 |
Somba Opu | 222 | 2980 | 18,837 | 22,039 | 2 |
Tinggimoncong | 70 | 1855 | 5208 | 7133 | 1 |
Tombolo Pao | 161 | 1997 | 7985 | 10,143 | 1 |
Table 5
Road network and settlement of 12 districts in the Jeneberang watershed."
District | Road network (km) | Weight | Settlement | Weight |
---|---|---|---|---|
Bajeng | 150.55 | 3 | 20,785 | 2 |
Barombong | 68.62 | 1 | 10,745 | 1 |
Bontolempangan | 103.14 | 1 | 5506 | 1 |
Bontomarannu | 108.75 | 1 | 8942 | 1 |
Bungaya | 115.03 | 2 | 5379 | 1 |
Manuju | 103.14 | 1 | 4257 | 1 |
Pallangga | 136.62 | 2 | 28,988 | 3 |
Parangloe | 166.31 | 3 | 4598 | 1 |
Parigi | 78.34 | 1 | 4021 | 1 |
Somba Opu | 122.95 | 2 | 26,570 | 3 |
Tinggimoncong | 153.40 | 3 | 6293 | 1 |
Tombolo Pao | 190.67 | 3 | 7517 | 1 |
Table 7
Population vulnerability level of 12 districts in the Jeneberang watershed."
District | Population density (persons/hm²) | Economic structure | Total weight | Population vulnerability level |
---|---|---|---|---|
Bajeng | 1208 | Industry | 3 | Medium |
Barombong | 2229 | Industry | 4 | High |
Bontolempangan | 104 | Agriculture | 3 | Medium |
Bontomarannu | 795 | Industry | 2 | Low |
Bungaya | 95 | Agriculture | 3 | Medium |
Manuju | 158 | Agriculture | 3 | Medium |
Pallangga | 2669 | Industry | 4 | High |
Parangloe | 85 | Agriculture | 3 | Medium |
Parigi | 100 | Agriculture | 3 | Medium |
Somba Opu | 5619 | Industry | 4 | High |
Tinggimoncong | 163 | Agriculture | 3 | Medium |
Tombolo Pao | 213 | Agriculture | 3 | Medium |
Table 8
Social vulnerability level of 12 districts in the Jeneberang watershed."
District | Weight | Social vulnerability level | ||||
---|---|---|---|---|---|---|
Population density | Vulnerable groups | Road network | Settlement | Total weight | ||
Bajeng | 1 | 1 | 3 | 2 | 7 | Medium |
Barombong | 2 | 1 | 1 | 1 | 5 | Low |
Bontolempangan | 1 | 1 | 1 | 1 | 4 | Low |
Bontomarannu | 1 | 1 | 1 | 1 | 4 | Low |
Bungaya | 1 | 1 | 2 | 1 | 5 | Low |
Manuju | 1 | 1 | 1 | 1 | 4 | Low |
Pallangga | 2 | 3 | 2 | 3 | 10 | High |
Parangloe | 1 | 1 | 3 | 1 | 6 | Medium |
Parigi | 1 | 1 | 1 | 1 | 4 | Low |
Somba Opu | 3 | 2 | 2 | 3 | 10 | High |
Tinggimoncong | 1 | 1 | 3 | 1 | 6 | Medium |
Tombolo Pao | 1 | 1 | 3 | 1 | 6 | Medium |
Table 9
Economic vulnerability level of 12 districts in the Jeneberang watershed."
District | Percentage of poor people (%) | Weight | Economic vulnerability level | ||
---|---|---|---|---|---|
Poor population | Productive land area | Total weight | |||
Bajeng | 11.00 | 2 | 3 | 5 | High |
Barombong | 11.00 | 2 | 1 | 3 | Medium |
Bontolempangan | 13.00 | 2 | 1 | 3 | Medium |
Bontomarannu | 10.00 | 2 | 1 | 3 | Medium |
Bungaya | 14.00 | 2 | 3 | 5 | High |
Manuju | 17.00 | 3 | 1 | 4 | High |
Pallangga | 8.00 | 1 | 3 | 4 | High |
Parangloe | 14.00 | 2 | 1 | 3 | Medium |
Parigi | 7.00 | 1 | 1 | 2 | Low |
Somba Opu | 5.00 | 1 | 1 | 2 | Low |
Tinggimoncong | 8.00 | 1 | 1 | 2 | Low |
Tombolo Pao | 11.00 | 2 | 1 | 3 | Medium |
Table 10
Socio-economic vulnerability level of 12 districts in the Jeneberang watershed."
District | Weight | Percentage of socio-economic vulnerability (%) | Socio-economic vulnerability level | ||
---|---|---|---|---|---|
Social vulnerability | Economic vulnerability | Total weight | |||
Bajeng | 7 | 5 | 12 | 67.00 | High |
Barombong | 5 | 3 | 8 | 44.00 | Low |
Bontolempangan | 4 | 3 | 7 | 39.00 | Low |
Bontomarannu | 4 | 3 | 7 | 39.00 | Low |
Bungaya | 5 | 5 | 10 | 56.00 | Medium |
Manuju | 4 | 4 | 8 | 44.00 | Low |
Pallangga | 10 | 4 | 14 | 78.00 | High |
Parangloe | 6 | 3 | 9 | 50.00 | Medium |
Parigi | 4 | 2 | 6 | 33.00 | Low |
Somba Opu | 10 | 2 | 12 | 67.00 | High |
Tinggimoncong | 6 | 2 | 8 | 44.00 | Low |
Tombolo Pao | 6 | 3 | 9 | 50.00 | Medium |
[1] | Abdullah, M.N., Munir, A., Lyas, S.A., 2003. Land-use based GIS-modelling for sedimentation reduction at Bili-Bili Dam, Indonesia. In: De Boer, D., (ed.). Erosion Prediction in Ungauged Basins:Integrating Methods and Techniques. Sapporo: IAHS-AISH Publication, 180-187. |
[2] |
Ackerl, T., Weldemariam, L.F., Nyasimi, M., 2023. Climate change risk, resilience, and adaptation among rural farmers in East Africa: A literature review. Regional Sustainability. 4(2), 185-193.
doi: 10.1016/j.regsus.2023.05.004 |
[3] | Ahn, S.R., Kim, S.J., 2019. Assessment of watershed health, vulnerability and resilience for determining protection and restoration Priorities. Environ. Modell. Softw. 122, 103926, doi: 10.1016/j.envsoft.2017.03.014. |
[4] | Alexander, D.E., 2014. Conclusion:Assessing Vulnerability in Europe and the World, Assessment of Vulnerability to Natural Hazards:A European Perspective. London: Elsevier Inccorporated, 209-210. |
[5] | Alsabhan, A.H., Singh, K., Sharma, A., et al., 2022. Landslide susceptibility assessment in the Himalayan range based along Kasauli-Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J. King Saud Univ. Sci. 34(2), 101759, doi: 10.1016/j.jksus.2021.101759. |
[6] |
Arifah, Salman, D., Yassi, A., et al., 2022. Livelihood vulnerability of smallholder farmers to climate change: A comparative analysis based on irrigation access in South Sulawesi, Indonesia. Regional Sustainability. 3(3), 244-253.
doi: 10.1016/j.regsus.2022.10.002 |
[7] | Arfadly, A.R., Zubair, H., Mahyuddin, M., et al., 2023. Effect Landslide Hazard Mitigation Using an Integrated of Analytical Hierarchy Process and Multi Criteria Evaluation:A Case Study the Jeneberang watershed. Les Ulis: Edition Diffusion Press (EDP) Sciences. |
[8] | Arriagada, L., Rojas, O., Arumí, J.L., et al., 2019. A new method to evaluate the vulnerability of watersheds facing several stressors: A case study in mediterranean Chile. Sci. Total Environ. 651, 1517-1533. |
[9] | Badan Nasional Penanggulangan Bencana, 2008. Peraturan Kepala BNPB Nomor 4 Tahun 2008. [2023-01-01]. https://bnpb.go.id/berita/peraturan-4-2008. |
[10] | Badan Push Statistic of Gowa Regency, 2022. Gowa Regency in Figure 2022. [2023-01-01]. https://gowakab.bps.go.id/. |
[11] | Barkey, R.A., Soma, A.S., Nursaputra, M., et al., 2019. Modeling of climate change impact on water availability in Metropolitan Mamminasata, Indonesia. IOP Conference Series: Earth and Environmental Science. 280(1), 012011, doi: 10.1088/1755-1315/280/1/012011. |
[12] | Chan, S.W., Abid, S.K., Sulaiman, N., et al., 2022. A systematic review of the flood vulnerability using geographic information system. Heliyon. 8(3), e09075, doi: 10.1016/J.HELIYON.2022.E09075. |
[13] | Chen, L., Xu, J.J., Wang, G.B., et al., 2019. Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models. J. Hydrol. 572, 449-460. |
[14] | Desalegn, H., Mulu, A., 2021. Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon. 7(1), e05865, doi: 10.1016/J.HELIYON.2020.E05865. |
[15] | Efiong, J., Eni, D.I., Obiefuna., J.N., et al., 2021. Geospatial modelling of landslide susceptibility in Cross River State of Nigeria. Sci. Afr. 14, e01032, doi: 10.1016/J.SCIAF.2021.E01032. |
[16] |
El Jazouli, A., Barakat, A., Khellouk, R., 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron. Disasters. 6(1), 1-12.
doi: 10.1186/s40677-018-0117-1 |
[17] | Iglesias-Pascual, R., Benassi, F., Hurtado-Rodríguez, C., 2023. Social infrastructures and socio-economic vulnerability: A socio-territorial integration study in Spanish urban contexts. Cities. 132, 104109, doi: 10.1016/J.CITIES.2022.104109. |
[18] | IPCC Intergovernamental Panel on Climate Change, 2022. Climate Change 2022:Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernamental Panel on Climate Change. [2023-01-01]. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FrontMatter.pdf. |
[19] | Jamshidi, O., Asadi, A., Kalantari, K., et al., 2019. Vulnerability to climate change of smallholder farmers in the Hamadan province, Iran. CLIM. RISK MANAG. 23, 146-159. |
[20] | Neissi, L., Albaji, M., Boroomand Nasab, S.B., 2020. Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran. Agric. Water Manage. 231, 106004, doi: 10.1016/j.agwat.2020.106004. |
[21] | Nguyen, A.K., Liou, Y.A, Li, M.H., et al., 2016. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 69, 100-117. |
[22] |
Nguyen, H.H., Recknagel, F., Meyer, W., 2019. Effects of projected urbanization and climate change on flow and nutrient loads of a Mediterranean catchment in South Australia. Ecohydrol. Hydrobiol. 19(2), 279-288.
doi: 10.1016/j.ecohyd.2018.10.001 |
[23] |
Nguyen, K.A., Liou, Y.A., 2019. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ. 664, 995-1004..
doi: 10.1016/j.scitotenv.2019.01.407 |
[24] | Okuda, K., Kawasaki, A., 2022. Effects of disaster risk reduction on socio-economic development and poverty reduction. Int. J. Disaster Risk Reduct. 80, 103241, doi: 10.1016/J.IJDRR.2022.103241. |
[25] | Pandey, R., Jha, S.K., Alatalo, J.M., et al., 2017. Sustainable livelihood framework-based indicators for assessing climate change vulnerability and adaptation for Himalayan communities. Ecol. Indic. 79, 338-346. |
[26] | Raufirad, V., Heidari, Q., Hunter, R., et al., 2018. Relationship between socioeconomic vulnerability and ecological sustainability: The case of Aran-V-Bidgol’s rangelands, Iran. Ecol. Indic. 85, 613-623. |
[27] |
Richardson, C.P., Amankwatia, K., 2019. Assessing watershed vulnerability in Bernalillo County, New Mexico using GIS-based fuzzy Inference. Journal of Water Resource and Protection. 11(2), 99-121.
doi: 10.4236/jwarp.2019.112007 |
[28] | Saaty, T.L., 1988. What is the Analytic Hiersrchy Process? Heidelberg: Springer, 110. |
[29] |
Soma, A.S., Kubota, T., 2018. Landslide susceptibility map using certainty factor for hazard mitigation in mountainous areas of ujung-loe watershed in South Sulawesi. For. Soc. 2(1), 79-91.
doi: 10.1177/003803856800200106 |
[30] | Taye, M.A., 2021. Agro-ecosystem sensitivity to climate change over the Ethiopian highlands in a watershed of Lake Tana sub-basin. Heliyon. 7(7), e07454, doi: 10.1016/J.HELIYON.2021.E07454. |
[31] | Wang, X., Li, R., Tian, Y., et al., 2021. Watershed-scale water environmental capacity estimation assisted by machine learning. J. Hydrol. 597, doi: 10.1016/j.jhydrol.2021.126310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||