Regional Sustainability ›› 2024, Vol. 5 ›› Issue (1): 100110.doi: 10.1016/j.regsus.2024.03.004cstr: 32279.14.j.regsus.2024.03.004
• Full Length Article • Previous Articles Next Articles
Johnson Adedeji OLUSOLAa,b,*(), Adeyinka Oluyemi ATURAMUc, Olufunke ASAOLUd, Olusesan Sola OGUNLEYEa
Received:
2023-03-16
Accepted:
2024-02-28
Published:
2024-03-30
Online:
2024-04-30
Contact:
E-mail address: Johnson Adedeji OLUSOLA, Adeyinka Oluyemi ATURAMU, Olufunke ASAOLU, Olusesan Sola OGUNLEYE. Spatial distribution and potential ecological and health risks associated with heavy metals in the Ijero-Ekiti mining site, Nigeria[J]. Regional Sustainability, 2024, 5(1): 100110.
Table 1
Coordinates and elevation of sample points selected in the present study."
Sample point | Latitude (N) | Longitude (E) | Elevation (m) |
---|---|---|---|
A | 07°49′08′′ | 05°05′11′′ | 370 |
B | 07°49′14′′ | 05°05′22′′ | 350 |
C | 07°49′29′′ | 05°06′37′′ | 378 |
D | 07°49′32′′ | 05°06′50′′ | 370 |
E | 07°50’35′′ | 05°06′60′′ | 380 |
F | 07°51′46′′ | 05°06′36′′ | 400 |
G | 07°52′60′′ | 05°07′55′′ | 385 |
H | 07°53′60′′ | 05°07′30′′ | 390 |
I | 07°53′70′′ | 05°08′40′′ | 350 |
J | 07°54′23′′ | 05°08′60′′ | 390 |
K | 07°54′60′′ | 05°09′30′′ | 400 |
L | 07°55′50′′ | 05°10′50′′ | 389 |
M | 07°56′30′′ | 05°11′33′′ | 367 |
N | 07°57′30′′ | 05°11′50′′ | 400 |
O | 07°58′50′′ | 05°11′60′′ | 358 |
Control point | 07°58′60′′ | 05°14′09′′ | 900 |
Table 2
Wavelengths and detection limits of heavy metals."
Heavy metal | Wavelength (nm) | Detection limit (mg/L) | Heavy metal | Wavelength (nm) | Detection limit (mg/L) |
---|---|---|---|---|---|
Arsenic (As) | 193.7 | 0.0050 | Iron (Fe) | 248.3 | 0.0046 |
cadmium (Cd) | 228.8 | 0.0028 | Manganese (Mn) | 279.5 | 0.0010 |
Cobalt (Co) | 283.3 | 0.0020 | Nickel (Ni) | 232.0 | 0.0040 |
Chromium (Cr) | 213.9 | 0.0010 | Lead (Pb) | 217.0 | 0.0120 |
Cadmium (Cu) | 324.8 | 0.0040 | Zinc (Zn) | 285.2 | 0.0030 |
Table 3
Classes and description of geo-accumulation index."
Class | Description | Class | Description |
---|---|---|---|
Igeo<0 | Unpolluted | 3≤Igeo<4 | Heavily polluted |
0≤Igeo<1 | Unpolluted to moderately polluted | 4≤Igeo<5 | Heavily to extremely polluted |
1≤Igeo<2 | Moderately polluted | Igeo≥5 | Extremely polluted |
2≤Igeo<3 | Moderately to heavily polluted |
Table 5
Reference dose (RfD) and cancer slope factor (CSF) for the selected 10 heavy metals."
Heavy metal | RfD | CSF | Reference | ||||
---|---|---|---|---|---|---|---|
Ingestion (mg/(kg•d)) | Dermal contact (mg/(kg•d)) | Inhalation (mg/(kg•d)) | Ingestion | Dermal contact | Inhalation | ||
As | 0.0003000 | 0.0003000 | 0.0004000 | 1.5 | 1.5 | 150.0 | Department of Environmental Affairs (DEA, |
Cd | 0.0000500 | 0.0000500 | 0.0000570 | - | - | 6.3 | |
Co | 0.0200000 | 0.0000057 | - | - | - | 9.8 | |
Cr | 0.0030000 | - | - | - | - | - | |
Cu | 0.0370000 | - | - | - | - | - | |
Fe | - | - | - | - | - | - | |
Mn | - | - | - | - | - | - | |
Ni | 0.0200000 | 0.0056000 | - | - | - | - | |
Pb | 0.0036000 | - | - | 8500.0 | - | 420.0 | |
Zn | 0.3000000 | 0.0750000 | - | - | - | - |
Table 6
Concentrations of the selected 10 heavy metals in the Ijero-Ekiti mining site."
Sample point | As (mg/kg) | Cd (mg/kg) | Co (mg/kg) | Cr (mg/kg) | Cu (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Ni (mg/kg) | Pb (mg/kg) | Zn (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
A | 3.45 | 0.60 | BDL | 17.22 | 10.22 | 8.45 | 220.20 | 6.34 | 0.60 | 16.10 |
B | 92.30 | 0.40 | 0.00 | 1.30 | 4.50 | 10.22 | 90.90 | 0.56 | 0.76 | 12.78 |
C | 4.50 | 0.02 | BDL | 14.22 | 8.60 | 90.89 | 300.20 | 7.77 | 3.43 | 15.82 |
D | 0.90 | 0.04 | 0.16 | 35.24 | 9.20 | 30.30 | 70.25 | 5.34 | 0.23 | 13.27 |
E | 1.20 | 0.50 | 0.13 | 3.23 | 6.12 | 7.44 | 60.34 | 0.60 | 2.56 | 8.89 |
F | 3.45 | 0.06 | BDL | 9.20 | 4.90 | 35.60 | 66.20 | 4.44 | 1.22 | 7.24 |
G | 4.45 | 0.12 | 0.17 | 10.66 | 4.66 | 29.90 | 45.60 | 3.36 | 2.45 | 17.34 |
H | 5.34 | 0.06 | 0.19 | 35.20 | 10.44 | 120.44 | 432.20 | 13.45 | 1.76 | 24.16 |
I | 6.26 | 0.04 | 0.01 | 30.20 | 7.24 | 160.23 | 46.76 | 9.89 | 1.90 | 20.13 |
J | 6.26 | 0.02 | BDL | 36.22 | 9.12 | 90.99 | 145.23 | 8.87 | 8.82 | 18.55 |
K | 0.90 | 0.04 | BDL | 4.22 | 9.10 | 39.34 | 70.74 | 7.20 | 3.73 | 21.57 |
L | 3.22 | 0.05 | BDL | 11.20 | 6.00 | 50.60 | 44.40 | 4.56 | 17.01 | 12.06 |
M | 0.88 | 0.30 | BDL | 1.20 | 3.50 | 4.40 | 300.30 | 0.34 | 8.26 | 5.68 |
N | 0.76 | 0.40 | BDL | 2.67 | 4.45 | 24.60 | 65.50 | 7.90 | 20.45 | 9.78 |
O | 0.27 | 0.06 | BDL | 2.80 | 5.30 | 30.42 | 78.30 | 8.20 | 12.60 | 5.70 |
Control point | 0.90 | 0.45 | BDL | 26.50 | 10.22 | 30.44 | 70.89 | 7.78 | 13.20 | 12.60 |
WHO permissible limit (soil) | 10.00 | 0.80 | 100.00 | 100.00 | 36.00 | 36.00 | 500.00 | 35.00 | 85.00 | 50.00 |
Mean | 8.94 | 0.18 | 0.11 | 14.32 | 6.89 | 48.92 | 135.81 | 5.92 | 5.72 | 13.94 |
Standard error of mean | 5.97 | 0.54 | 1.06 | 3.43 | 0.64 | 11.77 | 30.75 | 0.96 | 1.66 | 1.38 |
Standard deviation | 23.13 | 0.21 | 4.12 | 13.30 | 2.46 | 45.58 | 119.09 | 3.71 | 6.42 | 5.37 |
Variance# | 535.36 | 0.04 | 17.00 | 176.89 | 6.06 | 2077.78 | 14,181.32 | 13.77 | 41.27 | 28.71 |
Skewness# | 3.82 | 0.71 | 3.87 | 0.50 | -0.74 | 1.08 | 1.45 | 0.84 | 1.34 | 0.15 |
Standard error of Skewness# | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58 |
Kurtosis# | 14.72 | -1.23 | 14.99 | -1.40 | -1.69 | 0.50 | 1.04 | -0.16 | 0.70 | -0.70 |
Table 7
Geo-accumulation index, contamination factor, enrichment factor of the selected 10 heavy metals."
Heavy metal | Geo-accumulation index | Description | Contamination factor | Description | Enrichment factor | Description |
---|---|---|---|---|---|---|
As | -1.12 | Unpolluted | 29.94 | Very high degree | 0.24 | Deficient or low enrichment |
Cd | -1.12 | Unpolluted | 0.26 | Low degree | 0.01 | Deficient or low enrichment |
Co | -4.77 | Unpolluted | 0.06 | Low degree | 0.37 | Deficient or low enrichment |
Cr | -3.09 | Unpolluted | 0.16 | Low degree | 1.66 | Deficient or low enrichment |
Cu | -3.23 | Unpolluted | 0.20 | Low degree | 0.83 | Deficient or low enrichment |
Fe | -10.36 | Unpolluted | 0.01 | Low degree | 873.00 | Extremely high enrichment |
Mn | -3.24 | Unpolluted | 0.28 | Low degree | 15.72 | Significant enrichment |
Ni | 0.37 | Unpolluted to moderately polluted | 0.01 | Low degree | 0.01 | Deficient or low enrichment |
Pb | -2.38 | Unpolluted | 0.37 | Low degree | 0.37 | Deficient or low enrichment |
Zn | -3.31 | Unpolluted | 1.76 | Low degree | 1.76 | Deficient or low enrichment |
Contamination degree | 31.245 | |||||
Pollution load index | 0.186 |
Table 8
Pearson’s correlation matrix of the selected 10 heavy metals."
Heavy metal | As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|
As | 1.00 | |||||||||
Cd | 0.21 | 1.00 | ||||||||
Co | -0.10 | -0.22 | 1.00 | |||||||
Cr | -0.26 | -0.39 | 0.40 | 1.00 | ||||||
Cu | -0.29 | -0.11 | 0.22 | 0.72* | 1.00 | |||||
Fe | -0.20 | -0.41 | -0.14 | 0.66* | 0.53* | 1.00 | ||||
Mn | -0.08 | -0.05 | -0.15 | 0.21 | 0.31 | 0.34 | 1.00 | |||
Ni | -0.35 | -0.39 | -0.04 | 0.70* | 0.69* | 0.78* | 0.33 | 1.00 | ||
Pb | -0.24 | 0.13 | -0.24 | -0.17 | -0.21 | -0.22 | -0.20 | 0.09 | 1.00 | |
Zn | -0.03 | -0.43 | -0.05 | 0.56* | 0.65* | 0.72* | 0.25 | 0.73* | -0.31 | 1.00 |
Table 9
Principal components (PCs) of the selected 10 heavy metals."
Heavy metal | Communality | PC1 | PC2 | PC3 |
---|---|---|---|---|
As | 0.644 | -0.259 | -0.217 | 0.728 |
Cd | 0.345 | -0.442 | -0.378 | 0.083 |
Co | 0.881 | -0.033 | 0.933 | 0.093 |
Cr | 0.812 | 0.766 | 0.468 | -0.082 |
Cu | 0.656 | 0.774 | 0.239 | -0.027 |
Fe | 0.799 | 0.889 | -0.089 | 0.001 |
Mn | 0.396 | 0.493 | -0.337 | 0.198 |
Ni | 0.900 | 0.897 | -0.015 | -0.308 |
Pb | 0.798 | -0.236 | -0.260 | -0.821 |
Zn | 0.770 | 0.858 | -0.005 | 0.185 |
Eigenvalue | 4.192 | 1.438 | 1.371 | |
Variance (%) | 41.925 | 14.376 | 13.707 | |
Cumulative variance (%) | 41.925 | 56.301 | 70.008 |
Table 10
Potential ecological risk index and risk index of the selected 10 heavy metals."
Heavy metal | Potential ecological risk index | Risk index | Heavy metal | Potential ecological risk index | Risk index |
---|---|---|---|---|---|
As | 299.400 | Severe risk | Mn | 0.283 | Low risk |
Cd | 7.751 | Low risk | Ni | 0.842 | Low risk |
Co | 0.275 | Low risk | Pb | 0.339 | Low risk |
Cr | 0.795 | Low risk | Zn | 0.103 | Low risk |
Cu | 0.401 | Low risk | Total | 309.599 | High risk |
Fe | 0.011 | Low risk |
Table 11
Average daily dose by ingestion, inhalation, and dermal contact of the selected 10 heavy metals."
Heavy metal | Ingestion (10-3 mg/(kg•d) | Dermal contact (mg/(kg•d)) | Inhalation (10-8 mg/(kg•d)) |
---|---|---|---|
As | 3.00 | 1.00 | 5.00 |
Cd | 700.00 | 0.20 | 0.10 |
Co | 40.00 | 0.10 | 0.60 |
Cr | 5.00 | 0.20 | 8.00 |
Cu | 2.00 | 0.80 | 4.00 |
Fe | 0.02 | 0.60 | 30.00 |
Mn | 0.40 | 0.01 | 70.00 |
Ni | 2.00 | 0.60 | 3.00 |
Pb | 2.00 | 0.60 | 3.00 |
Zn | 5.00 | 0.20 | 7.00 |
Table 12
Non-carcinogenic risk of the selected 10 heavy metals through 3 exposure pathways."
Exposure pathway | Hazard quotient (10-4) | Hazard index (10-4) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | ||
Ingestion | 1.00 | 0.14 | 1.80 | 0.18 | 6.50 | - | - | 9.80 | 0.53 | 1.60 | 27.00 |
Dermal contact | 3.29 | 46.00 | 0.21 | - | 330.00 | - | - | 12.00 | - | 211.00 | 600.00 |
Inhalation | 0.11 | 0.18 | 9.70 | 27.00 | - | - | - | - | - | - | 38.00 |
Table 13
Carcinogenic risk of the selected 10 heavy metals through 3 exposure pathways."
Exposure pathway | Hazard quotient (10-4) | Hazard index (10-4) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | ||
Ingestion | 45.00 | - | - | 0.94 | - | - | - | - | 4.50 | - | 520.00 |
Dermal contact | 4.50 | - | - | 0.94 | - | - | - | - | - | 4.53 | 18.40 |
Inhalation | 0.68 | - | - | - | - | - | - | - | - | - | 0.68 |
[1] |
Adewumi, A.J., Laniyan, T.A., Xiao, T., et al., 2020. Exposure of children to heavy metals from artisanal gold mining in Nigeria: Evidences from bio-monitoring of hairs and nails. ACTA GEOCHIM. 39(4), 451-470.
doi: 10.1007/s11631-019-00371-9 |
[2] |
Adewumi, A.J., Laniyan, T.A., 2021. Ecological and human health risks associated with metals in water from Anka Artisanal Gold Mining Area, Nigeria. Human and Ecological Risk Assessment: An International Journal. 27(2), 307-326.
doi: 10.1080/10807039.2019.1710694 |
[3] | Akintan, O., Olusola, J., Falade, J., et al., 2022. Physicochemical, bacteriological and water quality index assessment of hand dug well (HDW) water suitability for drinking. Int. J. Environ. Anal. Chem. 1-22. |
[4] |
Ali, H., Khan, E., 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’-proposal of a comprehensive definition. Toxicol Environ. Chem. 100(1), 6-19.
doi: 10.1080/02772248.2017.1413652 |
[5] | Ali, W., Ma, Y.G., Zhu, J.Q., et al., 2022. Mechanisms of cadmium-induced testicular injury: A risk to male fertility. Cells. 11(22), 3601, doi: 10.3390/cells11223601. |
[6] |
Amoakwah, E., Ahsan, S., Rahman, M.A., et al., 2020. Assessment of heavy metal pollution of soil-water-vegetative ecosystems associated with artisanal gold mining. Soil and Sediment Contamination: An International Journal. 29(7), 788-803.
doi: 10.1080/15320383.2020.1777936 |
[7] | ATSDR (Agency for Toxic Substances and Disease Registry), 1999. US Public Health Service Top 20 Hazardous Substances-ATSDR/EPA Priority. [2023-02-14]. www. https://www.atsdr.cdc.gov/spl/previous/99list.html. |
[8] | Bello, S., Nasiru, R., Garba, N.N., et al., 2020. Annual effective dose associated with radon, gross alpha and gross beta radioactivity in drinking water from gold mining areas of Shanono and Bagwai, Kano state, Nigeria. Microchem J. 154, 104551, doi: 10.1016/j.microc.2019.104551. |
[9] |
Costa, M., Klein, C.B., 2006. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 36(2), 155-163.
doi: 10.1080/10408440500534032 |
[10] | Davodpour, R., Sobhanardakani, S., Cheraghi, M., et al., 2019. Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (case study: Markazi Province, Iran). Arch. Environ. Contam. Toxicol. 77, 344-358. |
[11] | DEA Department of Environmental Affairs, 2010. The Framework for the Management of Contaminated Land, South Africa. [2023-01-23]. http://sawic.environment.gov.za/documents/562.pdf. |
[12] | DPR Department of Petroleum Resources, 2002. Environmental Guidelines and Standards for the Petroleum Industry in Nigeria. [2023-01-23]. https://www.iea.org/policies/8676-environmental-guidelines-and-standards-for-the-petroleum-industry-in-nigeria-egaspin. |
[13] | Essandoh, P.K., Takase, M., Bryant, I.M., 2021. Impact of small-scale mining activities on physicochemical properties of soils in Dunkwa East Municipality of Ghana. The Scientific World Journal. doi: 10.1155/2021/9915117. |
[14] | Fagbenro, A.A., Yinusa, T.S., Ajekiigbe, K.M., et al., 2021. Assessment of heavy metal pollution in soil samples from a gold mining area in Osun State, Nigeria using proton-induced X-ray emission. Sci. Afr. 14, e01047, doi: 10.1016/j.sciaf.2021.e01047. |
[15] | Feseha, A., Chaubey, A.K., Abraha, A., 2021. Heavy metal concentration in vegetables and their potential risk for human health. Health Risk Analysis. (1), 68-81. |
[16] |
Hakanson, L., 1980. An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Res. 14(8), 975-1001.
doi: 10.1016/0043-1354(80)90143-8 |
[17] |
Hinton, J.J., Veiga, M.M., Veiga, A.T.C., 2003. Clean artisanal gold mining: A utopian approach? J. Clean Prod. 11(2), 99-115.
doi: 10.1016/S0959-6526(02)00031-8 |
[18] | Ibrahim, H.S., Ibrahim, M.A., Samhan, F.A., 2009. Distribution and bacterial bioavailability of selected metals in sediments of Ismailia Canal, Egypt. J. Hazard. Mater. 168, 1012-1016. |
[19] | Jafarzadeh, N., Heidari, K., Meshkinian, A., et al., 2022. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven, Iran: Spatial distribution, monte-carlo simulation, sensitive analysis. Environ. Res. 204, 112002, doi: 10.1016/j.envres.2021.112002. |
[20] | Kessey, K.D., Arko, B., 2013. Small scale gold mining and environmental degradation, in Ghana: Issues of mining policy implementation and challenges. Journal of Studies in Social Sciences. 5(1), 12-30. |
[21] |
Kjellström, T., 1992. Mechanism and epidemiology of bone effects of cadmium. IARC Scientific publications. (118), 301-310.
pmid: 1303956 |
[22] |
Kumar, S., Islam, A.R.M.T., Hasanuzzaman, M., et al., 2022. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environ. Sci. Pollut. Res. 29(28), 42742-42767.
doi: 10.1007/s11356-022-18734-w |
[23] |
Laniyan, T.A., Adewumi, A.J., 2020. Potential ecological and health risks of toxic metals associated with artisanal mining contamination in Ijero, southwest Nigeria. J. Environ. Sci. Health Part A. 55(7), 858-877.
doi: 10.1080/10934529.2020.1751504 |
[24] |
Lere, B.K., Basira, I., Abdulkadir, S., et al., 2021. Health risk assessment of heavy metals in irrigated fruits and vegetables cultivated in selected farms around Kaduna metropolis, Nigeria. Egyptian Journal of Basic and Applied Sciences. 8(1), 317-329.
doi: 10.1080/2314808X.2021.1992956 |
[25] |
Madukwe, H.Y., Ibigbami, O.A., Obasi, R.A., 2020. Assessment of trace and rare Earth element levels in stream sediments in Ijero-Ekiti area, Southwest Nigeria. Nature Environment and Pollution Technology. 19(2), 421-439.
doi: 10.46488/NEPT.2020.v19i02.001 |
[26] | Mohammadi, A.A., Yousefi, M., Soltani, J., et al., 2018. Using the combined model of gamma test and neuro-fuzzy system for modeling and estimating lead bonds in reservoir sediments. Environ. Sci. Pollut. Res. 25, 30315-30324. |
[27] | Muller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal. 2, 108-118. |
[28] | NPC Nigeria National Population Commission, 2006. 2006 Population Census of the Federal Republic of Nigeria: Analytical Report at the National Level. [2023-01-23]. https://archive.gazettes.africa/archive/ng/2009/ng-government-gazette-dated-2009-02-02-no-2.pdf |
[29] |
Nurcholis, M., Yudiantoro, D.F., Haryanto, D., et al., 2017. Heavy metals distribution in the artisanal gold mining area in Wonogiri. Indonesian Journal of Geography. 49(2), 133-144.
doi: 10.22146/ijg.15321 |
[30] |
Ogundele, L.T., Ayeku, P.O., 2020. Source apportionment and associated potential ecological risk assessment of heavy metals in coastal marine sediments samples in Ondo, Southwest, Nigeria. Stoch. Environ. Res. Risk Assess. 34(11), 2013-2022.
doi: 10.1007/s00477-020-01848-3 |
[31] |
Ogundele, L.T., Oluwajana, O.A., Ogunyele, A.C., et al., 2021. Heavy metals, radionuclides activity and mineralogy of soil samples from an artisanal gold mining site in Ile-Ife, Nigeria: Implications on human and environmental health. Environ. Earth Sci. 80(5), 1-15.
doi: 10.1007/s12665-020-09327-2 |
[32] | Okpashi, V.E., Uroko, R.I., Uchenna, N.O., et al., 2019. Heavy metals concentration in greens sold in Umuahia-market Nigeria: Assessment of risk to human health. EQA-Int. J. Environ. Qual. 34, 66-77. |
[33] | Olawuyi, D.S., Tubodenyefa, Z., 2018. Review of the Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN). [2023-01-23]. http://www.egaspin.org.ng. |
[34] |
Olise, F.S., Adeojo, S.A., Owoade, O.K., et al., 2019. Geochemical characterization of soil samples from gold mining areas using PIXE spectroscopy. Environ. Sci. Pollut. Res. 26(5), 4924-4937.
doi: 10.1007/s11356-018-3897-7 |
[35] | Oluseyi, T.O., Hamed, M.O., Odukoya, A.M., et al., 2019. Preliminary studies on the distribution characteristics of potentially toxic in soils around a gold mining site in Ijero, Ekiti State, Nigeria. UNILAG Journal of Medicine, Science and Technology. 7(2), 71-82. |
[36] | Olusola, J.A., Akintan, O.B., Adeyemi, M.O., 2020. Index of pollution status in soil and health risk assessment of heavy metals in vegetable crops of a municipal abattoir. Journal of Materials and Environmental Science. 11(8), 1250-1263. |
[37] |
Orisakwe, O.E., Dagur, E.A., Mbagwu, H.O.C., et al., 2018. Levels of some heavy metals in vegetables from artisanal mining sites of Dilimi River, Bukuru and Barkin Ladi North Central Nigeria: Any public health concern? Roczniki Państwowego Zakładu Higieny. 69(4), 335-345.
doi: 10.32394/rpzh |
[38] |
Owolabi, A.O., Amujo, K., Olorunfemi, I.E., 2021. Spatiotemporal changes on land surface temperature, land and water resources of host communities due to artisanal mining. Environ. Sci. Pollut. Res. 28(27), 36375-36398.
doi: 10.1007/s11356-021-12512-w |
[39] |
Raghu, Y., Ravisankar, R., Chandrasekaran, A., et al., 2017. Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J. Taibah Univ. Sci. 11(4), 523-533.
doi: 10.1016/j.jtusci.2015.08.004 |
[40] | Rasheed, A.I., Amuda, A.K., 2014. Impacts of artisanal mining on some heavy metals concentration in surface water in Kutcheri Zamfara state, North-Western Nigeria, Academic. Journal of Interdisciplinary Studies. 3(7), 74-82. |
[41] | Shekhawat, K., Chatterjee, S., Joshi, B., 2015. Chromium toxicity and its health hazards. International Journal of Advanced Research. 3(7), 167-172. |
[42] |
Shukla, A., Shukla, G.S., Srimal, R.C., 1996. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum. Exp. Toxicol. 15(5), 400-405.
pmid: 8735464 |
[43] |
Singh, R., Gautam, N., Mishra, A., et al., 2011. Heavy metals and living systems: An overview. Indian J. Pharmacol. 43(3), 246-253.
doi: 10.4103/0253-7613.81505 |
[44] | Sobhanardakani, S., Tayebi, L., Farmany, A., 2011. Toxic metal (Pb, Hg and As) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Applied Sciences Journal. 14(10), 1453-1456. |
[45] | Sobhanardakani, S., Hosseini, S.V., Miandare, H.K., et al., 2017. Determination of Cd, Cu, Mn and Zn concentrations in Iranian Caspian Sea caviar of Acipenser persicus using anodic stripping voltammetry. Iran. J. Sci. Technol. Trans. A-Sci. 41, 139-144. |
[46] | Sobhanardakani, S., Tayebi, L., Hosseini, S.V., 2018. Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ. Sci. Pollut. Res. 25, 2664-2671. |
[47] | Sobhanardakani, S., 2019. Ecological and human health risk assessment of heavy metal content of atmospheric dry deposition, a case study: Kermanshah, Iran. Biol. Trace Elem. Res. 187, 602-610. |
[48] | Stancheva, M., Makedonski, L., Peycheva, K., 2014. Determination of heavy metal concentrations of most consumed fish species from Bulgarian Black Sea coast. Bulg. Chem. Commun. 46(1), 195-203. |
[49] | Stevanovic, V., Gulan, L., Milenkovic, B., et al., 2018. Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region South Serbia. Environ. Geochem. Health. 40, 2101-2118. |
[50] | Talabi, A.O., Afolagboye, L.O., Akinola, O.O., et al., 2015. Assessment of impacts of artisanal and small scale mining activities on ground water quality of Ijero-Ekiti, south western, Nigeria. International Journal of Innovative Research in Science, Engineering and Technology. 4(4), 2347-6710. |
[51] | Tomilson, D.C., Wilson, J.G., Harris, C.R., et al., 1980. Problems in assessment of heavy metals in estuaries and the formation of pollution index. Helgol. Meeresunlters. 33, 566-575. |
[52] |
Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 72(2), 175-192.
doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 |
[53] | Wang, G., Liu, H.Q., Gong, Y., et al., 2017. Risk assessment of metals in urban soils from a typical industrial city, Suzhou, Eastern China. Int. J. Environ. Res. Public Health. 14(9), 1025, doi: 10.3390/ijerph14091025. |
[54] | WHO World Health Organization, FAO (Food Agriculture Organization of the United Nations), 2013. Joint WHO/FAO Food Standards Program Code Alimentarius Commission 13th Session. In: Thirty-Eight Session of the Codex Committee on Food Hygiene. [2023-01-23]. http://www.codexalimentarius.org/. |
[55] |
Yang, Z.P., Lu, W.X., Long, Y.Q., et al., 2011. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochem. Explor. 108(1), 27-38.
doi: 10.1016/j.gexplo.2010.09.006 |
[56] | Zoheir, B.A., AbdelFattah, M.G., ElAlfy, S.M., 2000. Trace Element Geochemistry and Microchemistry of Orogenic Gold Mineralization: Implications for New Exploration Targets in South Eastern Desert, Egypt. [2023-01-23]. https://www.pmu.bu.edu.eg/pmu/images/Stdf/150/article05.pdf. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||