Regional Sustainability ›› 2022, Vol. 3 ›› Issue (1): 1-11.doi: 10.1016/j.regsus.2022.03.002cstr: 32279.14.j.regsus.2022.03.002
• Full Length Article • Next Articles
HE Jianjiana, ZHANG Pengyanb,*()
Received:
2021-10-01
Revised:
2022-02-10
Accepted:
2022-03-21
Published:
2022-03-30
Online:
2022-05-13
Contact:
ZHANG Pengyan
E-mail:pengyanzh@126.com
HE Jianjian, ZHANG Pengyan. Evaluation of carbon emissions associated with land use and cover change in Zhengzhou City of China[J]. Regional Sustainability, 2022, 3(1): 1-11.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://regsus.xjegi.com/EN/10.1016/j.regsus.2022.03.002
Table 2
Carbon emission coefficients and carbon emission conversion factors of energy consumption (IPCC, 2013)."
Fuel type | Energy carbon emission coefficient (×103 t CO2/(×1012 J)) | Conversion factor | Energy combustion quality (×103 t) |
---|---|---|---|
Crude coal | 94.600 | 0.7143 tce/t | 47.829 |
Coke | 107.000 | 0.9714 tce/t | 35.168 |
Crude oil | 73.300 | 1.4286 tce/t | 23.914 |
Diesel | 74.100 | 1.4571 tce/t | 23.446 |
Kerosene | 71.900 | 1.4714 tce/t | 23.218 |
Gasoline | 69.300 | 1.4714 tce/t | 23.218 |
Fuel oil | 77.400 | 1.4286 tce/t | 23.914 |
Natural gas | 56.100 | 1.3300 tce/(×103 m3) | 25.686 |
Fig. 3.
Spatial distribution of the gradient belts of different LULC types in Zhengzhou City in 1988 (a), 2001 (b), 2009 (c), and 2015 (d). There were 20 quadrants in the south-north (SN) gradient belt and 41 quadrants in the west-east (WE) gradient belt. Carbon emissions were calculated in each quadrant in the SN and WE gradient belts."
Table 3
Pearson correlation coefficients between the carbon emission niches of the three spaces and the influencing factors."
Space | Population size | Per capita GDP | Population urbanization rate | Energy intensity |
---|---|---|---|---|
Production space | 0.99*** | 0.90 | 0.94* | -0.94* |
Living space | 0.92* | 0.93* | 0.97** | -0.91* |
Ecological space | -0.98** | -0.92* | -0.96** | 0.94* |
[1] |
Alshehry A.S., Belloumi M., 2015. Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia. Renew. Sustain. Energy Rev. 41, 237-247.
doi: 10.1016/j.rser.2014.08.004 |
[2] |
Arneth A., Sitch S., Pongratz J., et al., 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 10(2), 79-84.
doi: 10.1038/ngeo2882 |
[3] |
Chuai X.W., Qi X.X., Zhang X.Y., et al., 2018. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degrad. Dev. 29(10), 3489-3502.
doi: 10.1002/ldr.3117 |
[4] |
Esso L.J., Keho Y., 2016. Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. Energy. 114, 492-497.
doi: 10.1016/j.energy.2016.08.010 |
[5] |
Fang J., Chen A., Peng C., et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science. 292(5525), 2320-2322.
pmid: 11423660 |
[6] | Fang J.Y., Guo Z.D., Piao S.L., et al., 2007. Terrestrial vegetation carbon sinks in China, 1981-2000. Sci. China Ser. D Earth Sci. 50(9), 1341-1350. |
[7] |
Fuchs R., Herold M., Verburg P.H., et al., 2015. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biology. 21(1), 299-313.
doi: 10.1111/gcb.12714 |
[8] | Gong Q.N., Wang Y.Y., Tong Y.F., 2020. Population’s pressure on carbon emissions in Beijing-Tianjin-Hebei region: Spatial pattern and change analysis. Journal of Capital University of Economics and Business. 22(2), 12. (in Chinese) |
[9] |
Grinnell J., 1917. The niche-relationships of the California thrasher. Auk. 34(4), 427-433.
doi: 10.2307/4072271 |
[10] |
Han B.L., Wang R.S., Tao Y., et al., 2014. Urban population agglomeration in view of complex ecological niche: A case study on Chinese prefecture cities. Ecol. Indic. 47, 128-136.
doi: 10.1016/j.ecolind.2014.08.002 |
[11] |
Han B.L., Liu H.X., Wang R.S., 2015. Urban ecological security assessment for cities in the Beijing-Tianjin-Hebei metropolitan region based on fuzzy and entropy methods. Ecol. Model. 318, 217-225.
doi: 10.1016/j.ecolmodel.2014.12.015 |
[12] | Han J., Zhou X., Xiang W., 2016. Progress in research on land use effects on carbon emissions and low carbon management. Acta Ecologica Sinica. 36(4), 1152-1161. (in Chinese) |
[13] | Hancox R.J., 2006. Concluding remarks. Clin. Rev. Allerg. Immu. 31(2), 279-287. |
[14] | Henan Provincial Bureau of Statistics, 1989. Henan Statistical Yearbook. Beijing: China Statistics Press. (in Chinese) |
[15] |
Hong C.P., Burney J.A., Pongratz J., et al., 2021. Global and regional drivers of land-use emissions in 1961-2017. Nature. 589(7843), 554-561.
doi: 10.1038/s41586-020-03138-y |
[16] |
Houghton R.A., 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus B. 51(2), 298-313.
doi: 10.3402/tellusb.v51i2.16288 |
[17] |
Houghton R.A., House J.I., Pongratz J., et al., 2012. Carbon emissions from land use and land-cover change. Biogeosciences. 9(12), 5125-5142.
doi: 10.5194/bg-9-5125-2012 |
[18] | Intergovernmental Panel on Climate Change (IPCC), 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Cambridge: Cambridge University Press, 20-24. |
[19] | International Panel on Climate Change (IPCC), 2013. Climate Change 2013:The Physical Science Basis. Cambridge: Cambridge University Press, 866-871. |
[20] | International Panel on Climate Change (IPCC), 2014. Climate Change 2014:Impacts, Adaptation, and Vulnerability. Cambridge: Cambridge University Press,611-618. |
[21] |
Kivyiro P., Arminen H., 2014. Carbon dioxide emissions, energy consumption, economic growth, and foreign direct investment: Causality analysis for Sub-Saharan Africa. Energy. 74, 595-606.
doi: 10.1016/j.energy.2014.07.025 |
[22] | Lai L., 2010. Carbon emission effect of land use in China. PhD Thesis. Nanjing: Nanjing University. (in Chinese) |
[23] |
Lee J.W., 2013. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth. Energy Policy. 55, 483-489.
doi: 10.1016/j.enpol.2012.12.039 |
[24] |
Li J.X., Li C., Zhu F.G., et al., 2013. Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc. Ecol. 28(8), 1545-1565.
doi: 10.1007/s10980-013-9901-1 |
[25] | Li Q., Li T., Yang M., et al., 2017. Spatiotemporal variation of ecosystem services value based on gradient analysis in Wuhan: 2000-2010. Acta Ecologica Sinica. 37, 2118-2125. (in Chinese) |
[26] | Lin T., Grimm N.B., 2015. Comparative study of urban ecology development in the US and China: Opportunity and challenge. Urban Ecosyst. 18(2), 599-611. |
[27] | Lin T., Sun C.G., Li X.H., et al., 2016. Spatial pattern of urban functional landscapes along an urban-rural gradient: A case study in Xiamen City, China. Int. J. Appl. Earth Obs. Geoinf. 46, 22-30. |
[28] | Liu J.L., Liu Y.S., Li Y.R., 2017. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Geographica Sinica. 72(7), 1290-1304. (in Chinese) |
[29] |
Long H.L., Tu S.S., Ge D.Z., et al., 2016. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural. Stud. 47, 392-412.
doi: 10.1016/j.jrurstud.2016.03.011 |
[30] |
Long X.L., Naminse E.Y., Du J.G., et al., 2015. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 52, 680-688.
doi: 10.1016/j.rser.2015.07.176 |
[31] |
Martínez-Zarzoso I., Bengochea-Morancho A., Morales-Lage R., 2007. The impact of population on CO2 emissions: Evidence from European countries. Environ. Resour. Econ. 38(4), 497-512.
doi: 10.1007/s10640-007-9096-5 |
[32] | McGlade C., Ekins P., 2015. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature. 517, 187-190. |
[33] |
McHenry M.P., 2012. Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions? A technical, economic, and carbon emission analysis. Energ. Policy. 45, 64-72.
doi: 10.1016/j.enpol.2012.01.036 |
[34] |
Nie X., Wu J.X., Zhang W., et al., 2021. Can environmental regulation promote urban innovation in the underdeveloped coastal regions of western China? Mar. Policy. 133, 104709, doi: 10.1016/j.marpol.2021.104709.
doi: 10.1016/j.marpol.2021.104709 |
[35] | Odum H.T., Cantlon J.E., Kornicker L.S., 1960. An organizational hierarchy postulate for the interpretation of species-individual distributions, species entropy, ecosystem evolution, and the meaning of a species-variety index. Ecology. 41(2), 395-399. |
[36] |
Ojiem J.O., de Ridder N., Vanlauwe B., et al., 2006. Socio-ecological niche: a conceptual framework for integration of legumes in smallholder farming systems. Int. J. Agric. Sustain. 4(1), 79-93.
doi: 10.1080/14735903.2006.9686011 |
[37] |
Park R.E., 1936. Human ecology. Am. J. Sociol. 42(1), 1-15.
doi: 10.1086/217327 |
[38] |
Piao S., Fang J., Ciais P., et al., 2009. The carbon balance of terrestrial ecosystems in China. Nature. 458(7241), 1009-1013.
doi: 10.1038/nature07944 |
[39] |
Plevin R.J., Beckman J., Golub A.A., et al., 2015. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ. Sci. Technol. 49(5), 2656-2664.
doi: 10.1021/es505481d |
[40] |
Poumanyvong P., Kaneko S., 2010. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 70(2), 434-444.
doi: 10.1016/j.ecolecon.2010.09.029 |
[41] |
Radford K.G., James P., 2013. Changes in the value of ecosystem services along a rural-urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 109(1), 117-127.
doi: 10.1016/j.landurbplan.2012.10.007 |
[42] |
Seneviratne S.I., Donat M.G., Pitman A. J., et al., 2016. Allowable CO2 emissions based on regional and impact-related climate targets. Nature. 529(7587), 477-483.
doi: 10.1038/nature16542 |
[43] | Soytas U., Sari R., Ewing B.T., 2007. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 62(3-4), 482-489. |
[44] |
Tian G.J., Jiang J., Yang Z.F., et al., 2011. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol. Model. 222(3), 865-878.
doi: 10.1016/j.ecolmodel.2010.09.036 |
[45] |
Tian L., Chen J.Q., Yu S.X., 2014. Coupled dynamics of urban landscape pattern and socioeconomic drivers in Shenzhen, China. Landsc. Ecol. 29(4), 715-727.
doi: 10.1007/s10980-014-9995-0 |
[46] | Turner A.J., Frankenberg C., Wennberg P.O., et al., 2017. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc. Natl. Acad. Sci. U. S. A. 114(21), 5367-5372. |
[47] |
Vleeshouwers L.M., Verhagen A., 2002. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Change Biol. 8(6), 519-530.
doi: 10.1046/j.1365-2486.2002.00485.x |
[48] |
Xu Q., Yang R., Dong Y.X., et al., 2016. The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China. Ecol. Indic. 70, 304-316.
doi: 10.1016/j.ecolind.2016.05.052 |
[49] |
Zhang P.Y., He J.J., Hong X., et al., 2018. Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. J. Clean Prod. 204, 702-711.
doi: 10.1016/j.jclepro.2018.08.341 |
[50] |
Zhang P.Y., Yang D., Qin M.Z., et al., 2020. Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use. Land. Use. Policy. 99, 104958, doi: 10.1016/j.landusepol.2020.104958.
doi: 10.1016/j.landusepol.2020.104958 |
[51] |
Zhang R.S., Matsushima K., Kobayashi K., 2018. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Pol. 74, 32-40.
doi: 10.1016/j.landusepol.2017.04.025 |
[52] |
Zhang X.P., Cheng X.M., 2009. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68(10), 2706-2712.
doi: 10.1016/j.ecolecon.2009.05.011 |
[53] | Zhengzhou Municipal Bureau of Statistics, 2010. Zhengzhou City Statistical Yearbook. Beijing: China Statistics Press. (in Chinese) |
[54] | Zhengzhou Municipal Bureau of Statistics, 2012. Zhengzhou City Statistical Yearbook. Beijing: China Statistics Press. (in Chinese) |
[55] | Zhengzhou Municipal Bureau of Statistics, 2016. Zhengzhou City Statistical Yearbook. Beijing: China Statistics Press. (in Chinese) |
[56] |
Zhu E., Deng J., Zhou M., et al., 2019. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total. Environ. 646, 930-939.
doi: 10.1016/j.scitotenv.2018.07.317 |
[1] | LI Guoyi, LIU Jiahong, SHAO Weiwei. Urban flood risk assessment under rapid urbanization in Zhengzhou City, China [J]. Regional Sustainability, 2023, 4(3): 332-348. |
[2] | Kwaku ADDAI, Berna SERENER, Dervis KIRIKKALELI. Can environmental sustainability be decoupled from economic growth? Empirical evidence from Eastern Europe using the common correlated effect mean group test [J]. Regional Sustainability, 2023, 4(1): 68-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||