Regional Sustainability ›› 2022, Vol. 3 ›› Issue (1): 82-94.doi: 10.1016/j.regsus.2022.03.006cstr: 32279.14.j.regsus.2022.03.006
• Full Length Article • Previous Articles
JIANG Xiaoronga, LIU Qingb, WANG Shenglana,*()
Received:
2021-11-03
Revised:
2022-03-06
Accepted:
2022-03-29
Published:
2022-04-28
Online:
2022-05-13
Contact:
WANG Shenglan
E-mail:wangshenglan05@163.com
JIANG Xiaorong, LIU Qing, WANG Shenglan. Exploring the complex structural evolution of global primary product trade network[J]. Regional Sustainability, 2022, 3(1): 82-94.
Table 1
Top ten countries in the total in-degree of the global primary products trade network (GPPTN) in seven time periods."
Year | Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1985 | USA | JAP | DEU | ITA | FRA | GBR | NLD | BEL | ESP | CAN |
1990 | USA | JAP | DEU | FRA | ITA | GBR | NLD | BEL | KOR | ESP |
1995 | JAP | USA | DEU | FRA | ITA | GBR | NLD | KOR | BEL | ESP |
2000 | USA | JAP | DEU | KOR | FRA | ITA | CHN | ESP | NLD | BEL |
2005 | USA | JAP | DEU | CHN | FRA | GBR | ITA | KOR | NLD | ESP |
2009 | USA | CHN | JAP | DEU | KOR | ITA | FRA | IND | GBR | NLD |
2015 | CHN | USA | JAP | DEU | NLD | KOR | IND | GBR | FRA | ITA |
Table 2
Top ten countries in total out-degree of the GPPTN in seven time periods."
Year | Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 6 | 6 | 7 | 8 | 9 | 10 | |
1985 | USA | FSU | GBR | CAN | NLD | SAU | FRA | DEU | MEX | AUS |
1990 | SAU | FSU | USA | CAN | ARE | NOR | GBR | NLD | IRN | AUS |
1995 | USA | CAN | NLD | FRA | SAU | DEU | GBR | AUS | RUS | NOR |
2000 | SAU | RUS | CAN | NOR | VEN | ARE | GBR | AUS | NGA | IRN |
2005 | RUS | SAU | USA | CAN | NLD | DEU | AUS | FRA | NOR | GBR |
2009 | RUS | USA | SAU | NLD | AUS | CAN | BRA | DEU | ARE | IDN |
2015 | USA | RUS | CAN | AUS | NLD | SAU | BRA | DEU | FRA | ARE |
Fig. 3.
Community detection of the GPPTN in 2015. Node size indicates the total trade in the country or region. Line segments between nodes represent the size of trade flows between them. The national and regional International Organization for Standardization (ISO) codes were used in the diagram. The specific full name of the abbreviations is shown in Appendix (Table S1)."
Table S1
Country and region International Organization for Standardization (ISO) code."
ISO | Name | ISO | Name | ISO | Name | ISO | Name |
---|---|---|---|---|---|---|---|
AFG | Afghanistan | ETH | Ethiopia | FSU | Former Soviet Union | SUD | South Sudan |
AGO | Angola | FIN | Finland | MAR | Morocco | SUR | Suriname |
AIA | Anguilla | FJI | Fiji | MDA | Moldova | SVK | Slovakia |
ALB | Albania | FRA | France | MDG | Madagascar | SVN | Slovenia |
ZMB | Zambia | ZWE | Zimbabwe | MDV | Maldives | SWE | Sweden |
ARG | Argentina | GAB | Gabon | MEX | Mexico | SWZ | Swaziland |
ARM | Armenia | GBR | United Kingdom | MKD | Macedonia | SYC | Seychelles |
AUS | Australia | GEO | Georgia | MLI | Mali | SYR | Syria |
AUT | Austria | GHA | Ghana | MLT | Malta | TCD | Chad |
AZE | Azerbaijan | GIB | Gibraltar | MMR | Myanmar | TGO | Togo |
BDI | Burundi | GIN | Guinea | MNG | Mongolia | THA | Thailand |
BEL | Belgium | GMB | Gambia | MNT | Montenegro | TJK | Tajikistan |
BEN | Benin | GRC | Greece | MOZ | Mozambique | TKL | Tokelau |
BGD | Bangladesh | GRD | Grenada | MRT | Mauritania | TKM | Turkmenistan |
BGR | Bulgaria | GRL | Greenland | MSR | Montserrat | TMP | Timor-Leste |
BHS | Bahamas | GTM | Guatemala | MUS | Mauritius | TON | Tonga |
BLR | Belarus | GUM | Guam | MWI | Malawi | TTO | Trinidad and Tobago |
BLZ | Belize | GUY | Guyana | MYS | Malaysia | TUN | Tunisia |
BMU | Bermuda | ARE | United Arab Emirates | NAM | Namibia | TUR | Turkey |
BOL | Bolivia | HND | Honduras | NCL | New Caledonia | TUV | Tuvalu |
BRA | Brazil | HRV | Croatia | NER | Niger | TZA | Tanzania |
BRB | Barbados | HTI | Haiti | NGA | Nigeria | UGA | Uganda |
BTN | Bhutan | HUN | Hungary | NIC | Nicaragua | UKR | Ukraine |
BWA | Botswana | IDN | Indonesia | NIU | Niue | URY | Uruguay |
CAF | Central African | IND | India | NLD | Netherlands | USA | United States |
CAN | Canada | IRL | Ireland | NOR | Norway | UZB | Uzbekistan |
CHE | Switzerland | IRN | Iran | NPL | Nepal | VEN | Venezuela |
CHL | Chile | IRQ | Iraq | NRU | Nauru | VNM | Vietnam |
CHN | China | ISL | Iceland | NZL | New Zealand | VUT | Vanuatu |
CIV | Cote d'Ivoire | ISR | Israel | OMN | Oman | WSM | Samoa |
CMR | Cameroon | ITA | Italy | PAK | Pakistan | YEM | Yemen |
COG | Congo | JAM | Jamaica | PAN | Panama | ZAF | South Africa |
COL | Colombia | JOR | Jordan | PER | Peru | ZAR | Democratic Republic of the Congo |
COM | Comoros | JPN | Japan | PHL | Philippines | ||
CPV | Cape Verde | KAZ | Kazakhstan | PLW | Palau | ||
CRI | Costa Rica | KEN | Kenya | POL | Poland | ||
CUB | Cuba | KGZ | Kyrgyzstan | PRK | North Korea | ||
CYP | Cyprus | KHM | Cambodia | PRT | Portugal | ||
CZE | Czech | KIR | Kiribati | PRY | Paraguay | ||
DEU | Germany | KOR | South Korea | QAT | Qatar | ||
DJI | Djibouti | KWT | Kuwait | ROM | Romania | ||
DMA | Dominica | LAO | Laos | RUS | Russia | ||
DNK | Denmark | LBN | Lebanon | RWA | Rwanda | ||
DOM | Dominican | LBR | Liberia | SAU | Saudi Arabia | ||
ECU | Ecuador | LBY | Libya | SEN | Senegal | ||
EGY | Egypt | LKA | Sri Lanka | SER | Serbia | ||
ERI | Eritrea | LSO | Lesotho | SGP | Singapore | ||
ESH | Western Sahara | LTU | Lithuania | SLV | El Salvador | ||
ESP | Spain | LUX | Luxembourg | SMR | San Marino | ||
EST | Estonia | LVA | Latvia | SOM | Somalia |
[1] |
Alves L.A., Mangioni G., Rodrigues F., et al., 2018. Unfolding the complexity of the global value chain: strength and entropy in the single-layer, multiplex, and multi-layer international trade networks. Entropy. 20(12), 909, doi: 10.3390/e20120909.
doi: 10.3390/e20120909 |
[2] |
An H.Z., Zhong W.Q., Chen Y.R., et al., 2014. Features and evolution of international crude oil trade relationships: a trading-based network analysis. Energy. 74, 254-259.
doi: 10.1016/j.energy.2014.06.095 |
[3] |
Angelidis G., Ioannidis E., Makris G., et al., 2020. Competitive conditions in global value chain networks: An assessment using entropy and network analysis. Entropy. 22(10), 1068, doi: 10.3390/e22101068.
doi: 10.3390/e22101068 |
[4] |
Barabási A.L., Albert R., 1999. Emergence of scaling in random networks. Science. 286(5429), 509-512.
doi: 10.1126/science.286.5439.509 |
[5] |
Bianconi G., 2008. The entropy of randomized network ensembles. Europhys. Lett. 81(2), 28005, doi: 10.1209/0295-5075/81/28005.
doi: 10.1209/0295-5075/81/28005 |
[6] |
Cai M., Cui Y., Stanley H.E., 2017. Analysis and evaluation of the entropy indices of a static network structure. Sci. Rep. 7, 9340, doi: 10.1038/s41598-017-09475-9.
doi: 10.1038/s41598-017-09475-9 |
[7] | Chen Y., Li E., 2019. Spatial pattern and evolution of cereal trade networks among the Belt and Road countries. Progress in Geography. 38(10), 1643-1654. (in Chinese) |
[8] |
Chen Z.H., An H.Z., An F., et al., 2018. Structural risk evaluation of global gas trade by a network-based dynamics simulation model. Energy. 159, 457-471.
doi: 10.1016/j.energy.2018.06.166 |
[9] | Coe N.M., Yeung H.W.C., 2019. Global production networks: Mapping recent conceptual developments. J.Econ. Geogr. 19(4), 775-801. |
[10] |
Danilov-Danil’ yan V.I., 2013. The natural resources sector in the structure of the world economy and the causes of the global economic crisis. Her. Russ. Acad. Sci. 83(2), 115-122.
doi: 10.1134/S1019331613020068 |
[11] | de Andrade R.L., Rêgo L.C., 2018. The use of nodes attributes in social network analysis with an application to an international trade network. Phys. A Stat. Mech. Appl. 491, 249-270. |
[12] |
Fagiolo G., 2007. Clustering in complex directed networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 76(2), 26107, doi: 10.1103/physreve.76.026107.
doi: 10.1103/physreve.76.026107 |
[13] |
Fronczak A., Fronczak P., Janusz A.H., 2004. Average path length in random networks. Phys. Rev. E. 70(52), 056110, doi: 10.1103/physreve.70.056110.
doi: 10.1103/physreve.70.056110 |
[14] |
Garlaschelli D., Matteo T.D., Aste T., et al., 2007. Interplay between topology and dynamics in the world trade web. Eur. Phys. J. B. 57(2), 159-164.
doi: 10.1140/epjb/e2007-00131-6 |
[15] |
Grilli E.R., Yang M.C., 1988. Primary commodity prices, manufactured goods prices, and the terms of trade of developing countries: What the long run shows. The World Bank Economic Review. 2, 1-47.
doi: 10.1093/wber/2.1.1 |
[16] |
Hanousek J., Kočenda E., 2014. Factors of trade in Europe. Econ Syst. 38(4), 518-535.
doi: 10.1016/j.ecosys.2014.06.001 |
[17] |
Hao X.Q., An H.Z., Sun X.Q., et al., 2018. The import competition relationship and intensity in the international iron ore trade: from network perspective. Resour. Policy. 57, 45-54.
doi: 10.1016/j.resourpol.2018.01.005 |
[18] | Hong Y., Yang Y.M., Mu X.W., 2018. Assessing the US trade policies in the primary products. DEStech Transactions on Social Science Education and Human Science.148-151. |
[19] |
Ikeda Y., Iyetomi H., 2018. Trade network reconstruction and simulation with changes in trade policy. Evol. Inst. Econ. Rev. 15(2), 495-513.
doi: 10.1007/s40844-018-0110-0 |
[20] |
Jia J.S., Lu X., Yuan Y., et al., 2020. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature. 582(7812), 389-394.
doi: 10.1038/s41586-020-2284-y |
[21] |
Kitamura T., Managi S., 2017. Driving force and resistance: Network feature in oil trade. Appl. Energy. 208, 361-375.
doi: 10.1016/j.apenergy.2017.10.028 |
[22] |
Kulkarni S.S., Nathan H.S.K., 2016. The elephant and the tiger: Energy security, geopolitics, and national strategy in China and India’s cross border gas pipelines. Energy Res. Soc. Sci. 11, 183-194.
doi: 10.1016/j.erss.2015.09.010 |
[23] | Li G.Z., Xue M.T., Lv J.W., 2008. The study on the effect of oil price on primary commodities’ prices. Journal of International Trade. 7, 9-15. (in Chinese) |
[24] |
Mahutga M.C., 2006. The persistence of structural inequality? A network analysis of international trade, 1965-2000. Soc. Forces. 84(4), 1863-1889.
doi: 10.1353/sof.2006.0098 |
[25] |
Newman M.E.J., 2005. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323-351.
doi: 10.1080/00107510500052444 |
[26] | Newman M.E.J., 2006. Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577-8582. |
[27] |
Qiang W.L., Niu S.W., Liu A.M., et al., 2020. Trends in global virtual land trade in relation to agricultural products. Land Use Policy. 12(1), 192, doi: 10.1016/j.landusepol.2019.104439.
doi: 10.1016/j.landusepol.2019.104439 |
[28] |
Saramäki J., Kivelä M., Onnela J.P., et al., 2007. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 75(2), 027105, doi: 10.1103/physreve.75.027105.
doi: 10.1103/physreve.75.027105 |
[29] | Serrano M.A., Boguã M., 2003. Topology of the world trade web. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68(2), 634-646. |
[30] |
Sturgeon T., van Biesebroeck J., Gereffi G., 2008. Value chains, networks and clusters: reframing the global automotive industry. J. Econ. Geogr. 8(3), 297-321.
doi: 10.1093/jeg/lbn007 |
[31] | Tegene A., 1990. Commodity concentration and export earnings instability: The evidence from African countries. Am. Econ. 34(2), 55-59. |
[32] | United Nations, 2006. Standard international trade classification:revision 4. New York: United Nations Publications, 8-10. |
[33] |
Wang W., Fan L., Li Z., et al., 2021a. Measuring dynamic competitive relationship and intensity among the global coal importing trade. Appl. Energy. 303, 117611, doi: 10.1016/j.apenergy.2021.117611.
doi: 10.1016/j.apenergy.2021.117611 |
[34] | Wang J.Y., Dai C., Zhou M.Z., et al., 2021b. Research on global grain trade network pattern and its influencing factors. J. Nat. Resour. 36 (6), 1545-1556. (in Chinese) |
[35] | Wang F., Tian M.H., Yin R.S., et al., 2021c. Change of global woody forest products trading network and relationship between large supply and demand countries. Resources Science. 43(5), 1008-1024. (in Chinese) |
[36] |
Watts D.J., Strogatz S.H., 1998. Collective dynamics of ‘small-world’ networks. Nature. 393(6684), 440-442.
doi: 10.1038/30918 |
[37] |
Wilhite A., 2001. Blateral trade and ‘small-world’ networks. Comput. Econ. 18(1), 49-64.
doi: 10.1023/A:1013814511151 |
[38] | Xu L.L., Wang Q., Li N., et al. 2017. Spatial-temporal evolution of global energy security since 1990s. Acta Geographica Sinica. 72(12), 2166-2178. (in Chinese) |
[39] |
Yang Y., Poon J.P.H., Liu Y., et al. 2015. Small and flat worlds: A complex network analysis of international trade in crude oil. Energy. 93, 534-543.
doi: 10.1016/j.energy.2015.09.079 |
[40] |
Zha D., 2015. Energy security in China-European Union relations: framing further efforts of collaboration. Contemp. Politics. 21, 308-322.
doi: 10.1080/13569775.2015.1061246 |
[41] |
Zhong W.Q., An H.Z., Fang W., et al., 2016. Features and evolution of international fossil fuel trade network based on value of energy. Appl. Energy. 165, 868-877.
doi: 10.1016/j.apenergy.2015.12.083 |
[42] |
Zhu R., Wang Y., Lin D., et al., 2021. Exploring the rich-club characteristic in internal migration: evidence from Chinese Chunyun migration. Cities. 114(10), 103198, doi: 10.1016/j.cities.2021.103198.
doi: 10.1016/j.cities.2021.103198 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||