Regional Sustainability ›› 2024, Vol. 5 ›› Issue (4): 100180.doi: 10.1016/j.regsus.2024.100180cstr: 32279.14.REGSUS.2024007
• Full Length Article • Previous Articles Next Articles
Tamás HARDIa,b,*(), Ádám PÁTHYa,c, Andrea POZSGAIb
Received:
2024-03-28
Revised:
2024-07-26
Accepted:
2024-11-20
Published:
2024-12-30
Online:
2024-12-19
Contact:
Tamás HARDI
E-mail:hardi.tamas@krtk.hun-ren.hu
Tamás HARDI, Ádám PÁTHY, Andrea POZSGAI. Residents’ attitudes and behaviours on private green spaces in the suburban areas of Central European countries[J]. Regional Sustainability, 2024, 5(4): 100180.
Table 1
Basic characteristics of the study area."
Country | Region | Population (persons) | Percentage of impervious surface (%) | Residential density (personskm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Impervious surface of 16.00%-50.00% | Impervious surface of 50.00%-100.00% | ||||||||||||
2001 | 2011 | 2018 | 2006 | 2012 | 2018 | 2006 | 2012 | 2018 | 2011 | 2018 | |||
Romania | City | Cluj | 318,056 | 308,026 | 323,675 | 10.49 | 11.60 | 8.41 | 7.87 | 8.30 | 13.27 | 8624 | 8333 |
City region | Cluj region | 185,671 | 192,791 | 213,223 | 1.15 | 1.40 | 1.28 | 0.23 | 0.30 | 0.89 | 3603 | 3151 | |
Sample settlement | Baciu | 8064 | 9371 | 11,526 | 1.66 | 1.80 | 1.74 | 0.21 | 0.20 | 1.26 | 5246 | 4366 | |
Chinteni | 2831 | 2929 | 3294 | 0.72 | 0.80 | 0.98 | 0.02 | 0.00 | 0.34 | 3907 | 2573 | ||
Aiton | 1392 | 1154 | 1019 | 0.69 | 0.70 | 1.04 | 0.00 | 0.00 | 0.18 | 3421 | 1832 | ||
Slovakia | City | Nitra | 86,656 | 79,202 | 76,655 | 18.85 | 22.80 | 13.30 | 2.37 | 2.70 | 11.24 | 3056 | 3081 |
City region | Nitra region | 219,878 | 220,162 | 222,159 | 5.29 | 5.60 | 3.91 | 0.14 | 0.20 | 1.77 | 1922 | 1950 | |
Sample settlement | Nitrianske Hrnčiarovce | 1746 | 1914 | 2089 | 9.59 | 11.80 | 8.74 | 0.07 | 0.10 | 3.25 | 1655 | 1791 | |
Lapáš | 1494 | 1645 | 2659 | 7.59 | 10.49 | 7.92 | 0.16 | 0.14 | 4.68 | 1375 | 1875 | ||
Jelšovce | 950 | 988 | 1000 | 5.92 | 6.10 | 4.26 | 0.05 | 0.10 | 1.69 | 1518 | 1587 | ||
Hungary | City | Kecskemét | 107,708 | 111,150 | 110,687 | 8.06 | 8.36 | 5.86 | 3.03 | 3.37 | 6.09 | 2930 | 2863 |
City region | Kecskemét region | 145,647 | 140,751 | 139,920 | 1.84 | 1.90 | 1.56 | 0.42 | 0.44 | 1.12 | 2436 | 2114 | |
Sample settlement | Ballószög | 2666 | 3215 | 3652 | 3.31 | 3.45 | 2.18 | 0.22 | 0.23 | 1.34 | 2524 | 3000 | |
Kerekegyháza | 5994 | 6263 | 6563 | 3.06 | 3.08 | 2.56 | 0.23 | 0.24 | 1.43 | 2313 | 2016 | ||
Fülöpszállás | 2456 | 2191 | 2047 | 1.07 | 1.10 | 1.10 | 0.03 | 0.04 | 0.29 | 2088 | 1605 | ||
City | Györ | 129,411 | 129,519 | 132,038 | 10.30 | 10.90 | 11.88 | 9.52 | 10.70 | 12.59 | 3410 | 3074 | |
City region | Györ region | 146,126 | 149,396 | 158,148 | 3.00 | 3.10 | 3.20 | 0.83 | 0.90 | 1.55 | 1863 | 1681 | |
Sample settlement | Györújfalu | 1096 | 1565 | 2201 | 6.89 | 7.70 | 7.35 | 2.58 | 3.10 | 4.54 | 1381 | 2524 | |
Györzámoly | 1560 | 2336 | 3129 | 2.26 | 2.30 | 2.86 | 1.29 | 1.30 | 1.71 | 1595 | 2520 | ||
Börcs | 1005 | 1236 | 1320 | 3.89 | 3.90 | 4.42 | 1.29 | 1.30 | 1.94 | 1561 | 1670 |
Table 2
Migration patterns of settlers in the four city regions."
City region | Settlement | Percentage of settlers always living here (%) | Percentage of settlers moving to settlements (%) | Percentage of settlers moving from the centre of the city (%) | |
---|---|---|---|---|---|
Anytime | After 2000 | ||||
Cluj region | Baciu | 64.60 | 35.40 | 14. 00 | 64.70 |
Chinteni | 56.30 | 43.80 | 37.30 | 81.00 | |
Aiton | 31.30 | 68.80 | 59.20 | 60.50 | |
Total | 50.70 | 49.30 | 36.70 | 67.60 | |
Györ region | Györújfalu | 30.00 | 70.00 | 58.00 | 80.00 |
Györzámoly | 44.00 | 56.00 | 48.00 | 81.50 | |
Börcs | 50.00 | 50.00 | 46.00 | 88.00 | |
Total | 41.30 | 58.70 | 50.70 | 82.80 | |
Kecskemét region | Ballószög | 38.00 | 62.00 | 33.00 | 73.30 |
Kerekegyháza | 62.00 | 38.00 | 20.00 | 27.80 | |
Fülöpszállás | 52.00 | 48.00 | 32.00 | 16.70 | |
Total | 50.70 | 49.30 | 32.00 | 43.10 | |
Nitra region | Nitrianske Hrnčiarovce | 61.00 | 38.00 | 34.00 | 70.50 |
Lapáš | 42.90 | 57.10 | 50.00 | 65.60 | |
Jelšovce | 61.70 | 38.30 | 29.80 | 50.00 | |
Total | 54.90 | 45.10 | 38.60 | 62.70 | |
Inner zone | 48.50 | 51.50 | 37.50 | 73.70 | |
Transitional zone | 51.00 | 49.00 | 39.10 | 66.30 | |
Outer zone | 48.70 | 51.30 | 41.80 | 55.00 | |
Total zone | 49.40 | 50.60 | 39.50 | 65.00 |
Table 3
Factor scores of attitudes and behaviours of respondents towards green spaces."
Function or characteristic of garden | Biodiversity | Convenience | Ecology | Utility | Indigenous species | Climate |
---|---|---|---|---|---|---|
Providing habitat for birds | 0.570 | |||||
Providing habitat for insects | 0.756 | |||||
Providing habitat for other animals | 0.703 | |||||
Being maintained with little work | 0.597 | |||||
Being maintained inexpensively | 0.668 | |||||
Does not generate much waste | 0.620 | |||||
Increasing green areas | 0.670 | |||||
Contributing to ecological corridors | 0.751 | |||||
Useful from a market perspective | 0.881 | |||||
Useful for providing food for the household | 0.419 | |||||
Containing indigenous species | 0.489 | |||||
Does not contain invasive species | 0.680 | |||||
Providing shade | 0.626 | |||||
Regulating microclimate | 0.481 | |||||
Having big trees | 0.416 | |||||
Kaiser-Meyer-Olkin=0.704; Significance of Bartlett’s test of sphericity=0.000 |
Table 4
Percentage of respondents considering convenience important in the four city regions."
Zone | Cluj region | Györ region | Kecskemét region | Nitra region | ||||
---|---|---|---|---|---|---|---|---|
Settlement | Percentage (%) | Settlement | Percentage (%) | Settlement | Percentage (%) | Settlement | Percentage (%) | |
Inner zone | Baciu | 56.00 | Györújfalu | 90.00 | Ballószög | 94.00 | Nitrianske Hrnčiarovce | 96.00 |
Transitional zone | Chinteni | 49.00 | Györzámoly | 88.00 | Kerekegyháza | 86.00 | Lapáš | 93.60 |
Outer zone | Aiton | 45.10 | Börcs | 86.00 | Fülöpszállás | 54.00 | Jelšsovce | 87.50 |
Chi2 significance=0.000 |
Table 5
Influence of plants or cultivation types on awareness on the management of green spaces."
Plant or cultivation type | Biodiversity | Ecology | Indigenous species | Climate |
---|---|---|---|---|
Lawn | + | |||
Herbaceous plant | + | + | + | |
Kitchen garden | + | + | ||
Large tree | - | + | ||
Pine | - - | ++ | ||
Thuja | - | |||
Vine | + | |||
Shrub | ++ | ++ | + | |
Rose | + | - | ||
Arbor | ++ | ++ | + | |
Uncultivated soil | ++ | - - | ++ | ++ |
Gravel | - - | ++ |
Table 6
Logistic regression results for the driving factors of utility of green spaces."
Factor | Wald | Significance | Exp(B) |
---|---|---|---|
Moved to settlement after 2000 | 18.589 | 0.000 | 0.416 |
Outer zone | 35.441 | 0.000 | - |
Transitional zone | 1.361 | 0.243 | 0.762 |
Inner zone | 30.699 | 0.000 | 0.277 |
Household member with a tertiary degree | 4.465 | 0.035 | 0.544 |
Socio-economic status | 6.517 | 0.043 | 0.734 |
Average age of household | 1.788 | 0.281 | 1.014 |
Constant | 8.259 | 0.000 | 3.171 |
Nagelkerke R=0.159 |
[1] | Ambrey, C., Byrne, J., Matthews, T., et al., 2017. Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia. Appl. Geogr. 89, 52-60. |
[2] | Angel, S., Parent, J., Civco, D.L., et al., 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Prog. Plan. 75(2), 53-107. |
[3] | Antrop, M., 2005. Why landscapes of the past are important for the future. Landsc. Urban Plan. 70(1), 21-34. |
[4] | Aram, F., Higueras García, E., Solgi, E., et al., 2019. Urban green space cooling effect in cities. Heliyon. 5(4), 01339, doi: 10.1016/j.heliyon.2019.e01339. |
[5] | Bürgi, M., Bieling, C., von Hackwitz, K., et al., 2017. Processes and driving forces in changing cultural landscapes across Europe. Landscape Ecol. 32(11), 2097-2112. |
[6] | Byrne, J.A., Lo, A.Y., Yang, J.J., 2015. Residents’ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landsc. Urban Plan. 138, 132-143. |
[7] | Cameron, R.W.F., Blanuša, T., Taylor, J.E., et al., 2012. The domestic garden—Its contribution to urban green infrastructure. Urban For Urban Gree. 11(2), 129-137. |
[8] | Chang, J., Qu, Z.L., Xu, R.H., et al., 2017. Assessing the ecosystem services provided by urban green spaces along urban center-edge gradients. Sci. Reports. 7(1), 11226, doi: 10.1038/s41598-017-11559-5. |
[9] | Csomós, G., Farkas, J.Z., Kovács, Z., 2020. Access to urban green spaces and environmental inequality in post-socialist cities. Hungarian Geogr. Bul. 69(2), 191-207. |
[10] |
Csontos, P., Kalapos, T., Faradhimu, T., et al., 2020. Effects of tree size and park maintenance on soil seed bank of Gleditsia triacanthos, an exotic tree in urban green areas. Biol. Futura, 71(1-2), 81-91.
doi: 10.1007/s42977-020-00020-w pmid: 34554533 |
[11] | Darly, S., Feuillet, T., Laforêt, C., 2021. Home gardening and the social divide of suburban space: Methodological proposal for the spatial analysis of a social practice in the Greater Paris Urban Area. Sustainability Basel. 13(6), 3243, doi: 10.3390/su13063243. |
[12] | De Sousa Silva, C., Viegas, I., Panagopoulos, T., et al., 2018. Environmental justice in accessibility to green infrastructure in two European cities. Land Basel. 7(134), 1-23. |
[13] | Dumitrache, L., Zamfir, D., Nae, M.M., et al., 2016. The urban nexus: Contradictions and dilemmas of (post)communist (sub)urbanization in Romania. Human Geogr. 10(1), 38-50. |
[14] | EEA (European Environment Agency), 2016. Urban Sprawl in Europe. [2024-01-15]. https://www.eea.europa.eu/publications/urban-sprawl-in-europe. |
[15] | Forman, R.T.T., Wilson, E.O., 1995. Land Mosaics. Cambridge: Cambridge University Press, 406-435. |
[16] | Forman, R.T.T., 2008. Urban Regions:Ecology and Planning Beyond the City. Cambridge: University Press Cambridge, 164-222. |
[17] | Gangopadhyay, K., Balooni, K., 2012. Technological infusion and the change in private, urban green spaces. Urban For. Urban Gree. 11(2), 205-210. |
[18] | Gardi, C., 2017. Is urban expansion a problem? In: Gardi, C., (ed.). Urban Expansion, Land Cover and Soil Ecosystem Services. London: Routledge, 3-18. |
[19] | Graffigna, S., González-Vaquero, R.A., Torretta, J.P., et al., 2023. Importance of urban green areas’ connectivity for the conservation of pollinators. Urban Ecosyst. 27, 417-426. |
[20] | Grigorescu, I., Mitrică, B., Kucsicsa, G., et al., 2012. Post-communist land use changes related to urban sprawl in the Romanian metropolitan areas. Human Geogr. 6(1), 35-46. |
[21] | Hall, T., 2010. Goodbye to the backyard?—The minimisation of private open space in the Australian Outer-Suburban Estate. Urban Policy Res. 28(4), 411-433. |
[22] | Hardi, T., Repaská, G., Veselovský, J., et al., 2020. Environmental consequences of the urban sprawl in the suburban zone of Nitra: An analysis based on landcover data. Geographica Pannonica. 24(3), 205-220. |
[23] | Hardi, T., 2022. Differences and similarities in the expansion of suburban built-up areas around the different city regions of three Central European countries. Space and Society. 36(3), 165-193. |
[24] | Hlaváček, P., Kopáček, M., Horáčková, L., 2019. Impact of suburbanisation on sustainable development of settlements in suburban spaces: Smart and new solutions. Sustainability Basel. 11(24), 7182, doi: 10.3390/su11247182. |
[25] |
Hu, X.W., Su, Y.Q., Ren, K.F., et al., 2021. Measurement and influencing factors of urban traffic ecological resilience in developing countries: A case study of 31 Chinese cities. Reg. Sustain. 2(3), 211-223.
doi: 10.1016/j.regsus.2021.10.001 |
[26] | Ilbery, B., 2014. The Geography of Rural Change. London: Routledge, 131-160. |
[27] | Johnson, M.P., 2001. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plan. A. 33(4), 717-735. |
[28] | Kahn, M.E., 2000. The environmental impact of suburbanization. J. Policy Anal. Manag. 19(4), 569-586. |
[29] | Lagucki, E., Burdine, J.D., McCluney, K.E., 2017. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city. PeerJ. 5, e3620, doi: 10.7717/peerj.3620. |
[30] | Lennert, J., Farkas, J.Z., Kovács, A.D., et al., 2020. Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability Basel. 12(8), 3331, doi: 10.3390/su12083331. |
[31] | Li, Q.Z, Thapa, S., Hu, X.L., et al., 2022. The relationship between urban green space and urban expansion based on gravity methods. Sustainability Basel. 14(9), 5396, doi: 10.3390/su14095396. |
[32] | Lian, Z.X., Feng, X.H., 2022. Urban green space pattern in core cities of the greater bay area based on morphological spatial pattern analysis. Sustainability Basel. 14(19), 12365, doi: 10.3390/su141912365. |
[33] |
Liu, Q., Peng, P.H., Wang, Y.K., et al., 2019. Microclimate regulation efficiency of the rural homegarden agroforestry system in the Western Sichuan Plain, China. J. Mt. Sci-Engl. 16(3), 516-528.
doi: 10.1007/s11629-018-5112-1 |
[34] | Mahmoudi Farahani, L., Maller, C., Phelan, K., 2018. Private gardens as urban greenspaces: Can they compensate for poor greenspace access in lower socioeconomic neighbourhoods? Landscape Online. 59, doi: 10.3097/LO.201859. |
[35] | Martínez-Sastre, R., Ravera, F., González, J.A., et al., 2017. Mediterranean landscapes under change: Combining social multicriteria evaluation and the ecosystem services framework for land use planning. Land Use Pol. 67, 472-486. |
[36] | Matthews, T., Lo, A.Y., Byrne, J.A., 2015. Reconceptualizing green infrastructure for climate change adaptation: Barriers to adoption and drivers for uptake by spatial planners. Landsc. Urban Plan. 138, 155-163. |
[37] | Repaská, G., Vilinová, K., Šolcová, L., 2017. Trends in development of residential areas in suburban zone of the city of Nitra (Slovakia). Eur. Countrys. 9(2), 287-301. |
[38] | Russo, A., Escobedo, F.J., Cirella, G.T., et al., 2017. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agr. Ecosyst. Environ. 242, 53-66. |
[39] | Săgeată, R., Mitrică, B., Cercleux, A.L., et al., 2023. Deindustrialization, tertiarization and suburbanization in central and eastern Europe. Lessons learned from Bucharest City, Romania. Land Basel. 12(9), 1731, doi: 10.3390/land12091731. |
[40] | Semeraro, T., Scarano, A., Buccolieri, R., et al., 2021. Planning of urban green spaces: An ecological perspective on human benefits. Land Basel. 10, 105, doi: 10.3390/land10020105. |
[41] | Siedentop, S., Fina, S., 2012. Who sprawls most? Exploring the patterns of urban growth across 26 European countries. Environ. Plan. A. 44(11), 2765-2784. |
[42] | Slaev, A., Nedovic-Budic, Z., 2016. The challenges of implementing sustainable development: The case of Sofia’s master plan. Sustainability Basel. 9(1), 15, doi: 10.3390/su9010015. |
[43] | Svobodová, I., Drlík, J., Spěšná, D., et al., 2021. Food self-provisioning in the Czech Republic—A comparison of suburban and peripheral regions of Rural South Moravia. Eur. Countrys. 13(3), 516-535. |
[44] | Taubenböck, H., Gerten, C., Rusche, K., et al., 2019. Patterns of Eastern European urbanisation in the mirror of Western trends—Convergent, unique or hybrid? Environ. Plan. B. 46(7), 1206-1225. |
[45] | UN-DESAPD (United Nations-Department of Economic and Social Affairs Population Dynamics), 2019. World Urbanization Prospects: The 2018 Revision. [2024-01-15]. .https://population.un.org/wup/Publi-catio-ns/Files/WUP2018-Report.pdf. |
[46] | Wang, Y.X., 2007. On the cognitive processes of human perception with emotions, motivations, and attitudes. Int. J. Cognitive Informatics Nat. Intelligence. 1(4), 1-13. |
[47] | Warhurst, J.R., Parks, K.E., McCulloch, L., et al., 2014. Front gardens to car parks: Changes in garden permeability and effects on flood regulation. Sci. Total Environ. 485-486, 329-339. |
[48] | Zhou, L., Huang, X.Y., Zhao, C.M., et al., 2022. Regional landscape transformation and sustainability of the rural homegarden agroforestry system in the Chengdu Plain, China. Reg. Sustain. 3(1), 68-81. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||