Regional Sustainability ›› 2023, Vol. 4 ›› Issue (3): 249-260.doi: 10.1016/j.regsus.08.001cstr: 32279.14.j.regsus.08.001
• Full Length Article • Previous Articles Next Articles
Oluwakemi Bolanle AKINTANa, Johnson Adedeji OLUSOLAa,*(), Olaniyi Patrick IMOLEa, Moyosoluwa Odunayo ADEYEMIb
Received:
2022-12-29
Revised:
2023-05-26
Accepted:
2023-08-15
Published:
2023-09-30
Online:
2023-10-20
Contact:
*E-mail address: Oluwakemi Bolanle AKINTAN, Johnson Adedeji OLUSOLA, Olaniyi Patrick IMOLE, Moyosoluwa Odunayo ADEYEMI. Geotechnical and GIS-based environmental factors and vulnerability studies of the Okemesi landslide, Nigeria[J]. Regional Sustainability, 2023, 4(3): 249-260.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Data types and sources."
Item | Type | Date source | Year |
---|---|---|---|
Rainfall | Station | Nigerian Meteorological Agency (NiMET) in Ado-Ekiti, Nigeria ( | Monthly rainfall (2001-2017) and daily rainfall (2017) |
Landsat image (Landsat 8 OLI_TIRS) | Raster | https://www.usgs.gov/ | 2019 |
Copernicus sentinel data | Raster | Alaska Satellite Facility and National Aeronautics and Space Administration (NASA) | 2007 |
High resolution satellite imagery | Raster | Google Earth Pro | 2018 |
Administrative map | Vector | https://www.usgs.gov/ and | 2010 |
Geology map | Raster | The Ministry of Agriculture and Natural Resources, Nigeria | 1965 |
Soil map | Raster | Federal Department of Agriculture Land Resources and Soil Survey Division, Nigeria | 2018 |
Study location | Vector point | Field investigation | 2019 |
Table 3
Landslide vulnerability map."
Input parameter | Influence level (%) | Field value | Field class | Weight scale |
---|---|---|---|---|
Land use and land cover type | 10.00 | 1 | Farmland | 1 |
2 | Bare or open surface | 2 | ||
3 | Forest | 3 | ||
4 | Rock surface | 2 | ||
5 | Built-up area | 3 | ||
Reclassified slope | 40.00 | 1 | High | 1 |
2 | Medium | 2 | ||
3 | Low | 3 | ||
Reclassified geology | 25.00 | 1 | High | 1 |
2 | Medium | 2 | ||
3 | Low | 3 | ||
Reclassified soil | 25.00 | 1 | High | 1 |
2 | Medium | 2 | ||
3 | Low | 3 |
Table 4
Geotechnical analysis of slope materials."
Attribute | Soil sample | ||
---|---|---|---|
A | B | C | |
Gravel (%) | 23.00 | 0.26 | 0.03 |
Sand (%) | 0.65 | 0.57 | 0.57 |
Fines (%) | 0.12 | 0.18 | 0.28 |
Particle density (mg/m3) | 2.68 | 2.72 | 2.67 |
Natural water content (%) | 7.67 | 5.92 | 10.95 |
Wet density (mg/m3) | 2.03 | 2.11 | 2.01 |
Unit weight (kg/m2) | 1989 | 2068 | 1970 |
Collapsibility potential (%) | 6.65 | 12.09 | 12.62 |
Direct shear test | 0.20 | 0.25 | 0.16 |
Cohesion (×103 Pa) | 16.00 | 18.00 | 17.00 |
Table 5
Statistical description of rainfall in Okemesi landslide area from 2010 to 2017."
Year | Rainfall (mm) | ||||
---|---|---|---|---|---|
Maximum | Minimum | Mean monthly | Annual | Standard deviation | |
2000 | 214.9 | 2.4 | 102.0 | 1223.6 | 72.9 |
2001 | 217.7 | 0.0 | 92.6 | 1110.7 | 94.5 |
2002 | 279.9 | 0.0 | 134.1 | 1609.8 | 99.2 |
2003 | 335.2 | 0.0 | 123.1 | 1477.1 | 100.4 |
2004 | 275.5 | 0.0 | 74.6 | 895.4 | 86.3 |
2005 | 242.6 | 0.0 | 110.0 | 1320.1 | 71.5 |
2006 | 228.6 | 0.0 | 109.7 | 1316.9 | 79.6 |
2007 | 182.4 | 0.0 | 87.6 | 1051.6 | 61.8 |
2008 | 241.7 | 0.0 | 112.3 | 1347.9 | 85.2 |
2009 | 315.9 | 0.0 | 121.4 | 1456.6 | 91.9 |
2010 | 279.1 | 0.0 | 116.5 | 1397.8 | 79.6 |
2011 | 325.0 | 0.0 | 126.1 | 1512.8 | 95.1 |
2012 | 329.2 | 6.7 | 133.8 | 1605.4 | 102.6 |
2013 | 339.8 | 15.1 | 132.6 | 1591.7 | 105.9 |
2014 | 292.6 | 0.2 | 130.5 | 1566.2 | 94.7 |
2015 | 258.5 | 0.0 | 94.5 | 1133.6 | 85.3 |
2016 | 228.6 | 0.0 | 100.2 | 1201.9 | 80.2 |
2017 | 405.7 | 0.4 | 118.3 | 1419.4 | 129.1 |
[1] | Abelev Y., 1948. The Essentials of Designing and Building on Microporous Soils. Moskva: Stroitel Naya Promyshelmast, 10. |
[2] |
Ayalew L., Yamagishi H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Gapan. Geomorphology. 65(1-2), 15-31.
doi: 10.1016/j.geomorph.2004.06.010 |
[3] | Ayodele G.O., 2020. Geological assessment of Landslide occurrences in Okemesi Area, Southwestern Nigeria. American Journal of Environmental Engineering. 10(1), 13-19. |
[4] | Ayodele O., Odeyemi I., 2010. Analysis of the lineaments extracted from Landsat image of the area around Okemesi, south-western Nigeria. Indian Journal of Science and Technology. 3(1), 31-36. |
[5] | Bamisaiye O., 2019. Landslide in parts of Southwestern Nigeria. SN Appl. Sci. 1, 1-12. |
[6] | Brand E.W., Premchitt J., Phillipson H., 1984. Relationship between rainfall and landslides in Hong Kong. In:Proceedings of the 4th International Symposium on Landslides. Canadian Geotechnical Society. Toronto, Canada. |
[7] | Bujang B., Faisal H., David H., et al., 2008. Landslides in Malaysia: Occurrences, Assessment, Analysis and Remediation. Putrajaya: Penerbitan Universiti Putra Malaysia. 406-421. |
[8] | Chauhan S., Sharma M., Arora M.K., et al., 2010. Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and conformation. 12(5), 340-350. |
[9] | Coe J.A., 2017. Landslide hazards and climate change:A perspective from the United States. In: Ken, H., (ed.). Slope Safety Preparedness for Impact of Climate Change. Leiden: CRC Press, 479-523. |
[10] | Dikshit A., Satyam N., Pradhan B., 2019. Estimation of rainfall-induced landslides using the TRIGRS model. Earth Syst. Environ. 3, 575-584. |
[11] | Efiong J., Eni D.I., Obiefuna J.N., et al., 2021. Geospatial modelling of landslide susceptibility in Cross River State of Nigeria. Sci. Afr. 14, doi: 10.1016/j.sciaf.2021.e01032. |
[12] | Fagbohun B.J., Adeoti B., Aladejana O.O., 2017. Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria. J. Afr. Earth Sci. 133, 123-137. |
[13] | Gbadebo A.M., Adeyemi M.O., Adedeji H.O., et al., 2021. Geotechnical and geomorphological investigation of rainfall induced shallow landslide at Okeigbo, Ondo State, Southwestern Nigeria. J. Afr. Earth Sci. 178, doi: 10.1016/j.jafrearsci.2021.104163. |
[14] |
Guzzetti F., Carrara A., Cardinali M., et al., 1999. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1-4), 181-216.
doi: 10.1016/S0169-555X(99)00078-1 |
[15] | Huang F.M., Chen J.W., Liu W.P., et al., 2022. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology. 408, doi: 10.1016/j.geomorph.2022.108236. |
[16] | Huang J., Ju N.P, Liao Y.J., et al., 2015. Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Natural Hazards and Earth System Sciences Discussions. 15(12), 2715-2723. |
[17] | Ige O.O., Oyeleke T.A., Baiyegunhi C., et al., 2016. Liquefaction, landslide and slope stability analyses of soils: A case study of soils from part of Kwara, Kogi and Anambra States of Nigeria. Natural Hazards and Earth System Sciences Discussions. 1-39. |
[18] | Igwe O., 2015. The geotechnical characteristics of landslides on the sedimentary and metamorphic terrains of south-east Nigeria, West Africa. Geoenviron. Disasters. 2, 1-14. |
[19] | Igwe O., Una C.O., 2019. Landslide impacts and management in Nanka area, Southeast Nigeria. Geoenviron. Disasters. 6, 1-12. |
[20] | Kannan M., Singh M., 2020. Identifying crime hot spots. In: Chainey, S., Ratcliffe, J., (eds.). Geographical Information System and Crime Mapping. Leiden: CRC Press, 95-118. |
[21] | Klemm D.D., Schneider W., Wagner B., 1984. The Precambrian met volcano-sedimentary sequence east of Ife and Ilesha/SW Nigeria. A Nigerian “greenstone belt”? J. Afr. Earth Sci. 2(2), 161-176. |
[22] | Lee S., 2019. Current and future status of GIS-based landslide susceptibility mapping: A literature review. Korean Journal of Remote Sensing. 35(1), 179-193. |
[23] |
Mersha T., Meten M., 2020. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, Northwestern Ethiopia. Geoenviron. Disasters. 7(1), 1-22.
doi: 10.1186/s40677-019-0133-9 |
[24] | Msilimba G.G., Holmes P.J., 2005. A landslide hazard assessment and vulnerability appraisal procedure: Vunguvungu/Banga catchment, Northern Malawi. Nat. Hazards. 34, 199-216. |
[25] | National Population Commission of Nigeria, 2016. Nigeria Population and Housing Census 2006. [2023-6-28]. https://ghdx.healthdata.org/record/nigeria-population-and-housing-census-2006. |
[26] |
Nseka D., Kakembo V., Bamutaze Y., et al., 2019. Analysis of topographic parameters underpinning landslide occurrence in Kigezi highlands of southwestern Uganda. Nat. Hazards. 99(2), 973-989.
doi: 10.1007/s11069-019-03787-x |
[27] |
Ohlmacher G.C., 2007. Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Eng. Geol. 91(2-4), 117-134.
doi: 10.1016/j.enggeo.2007.01.005 |
[28] | Okunlola O.A., Okoroafor R.E., 2009. Geochemical and petrogenetic features of schistose rocks of the Okemesi fold belt, Southwestern Nigeria. RMZ-Materials and Geoenvironment. 56(2), 148-162. |
[29] | Rahaman M., 1976. Review of the Basement Geology of South-Western Nigeria. Lagos: Elizabethan Publish, 41-58. |
[30] | Singh S.K., 2023. Influence of anthropogenic activities on landslide susceptibility: A case study in Solan district, Himachal Pradesh, India. J Mt. Sci. 20(2), 429-447. |
[31] | Sun D., Chen D., Zhang J., et al., 2023. Landslide susceptibility mapping based on interpretable machine learning from the perspective of geomorphological differentiation. Land, 12(5), 1018. |
[32] | Tran T.V., Alvioli M., Lee G., et al., 2018. Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: A case study. Landslides. 15, 1071-1084. |
[33] | Wang K., Xu H., Zhang S.J., et al., 2020. Identification and extraction of geomorphological features of landslides using slope units for landslide analysis. ISPRS Int. J. Geo-Inf. 9(4), 274, doi: 10.3390/ijgi9040274. |
[34] | Wubalem A., 2021. Landslide susceptibility mapping using statistical methods in Uatzau catchment area, Northwestern Ethiopia. Geoenviron. Disasters. 8(1), 1, doi: 10.1186/s40677-020-00170-y. |
[1] | Ratan PAL, Buddhadev HEMBRAM, Narayan Chandra JANA. Assessment of soil erosion in the Irga watershed on the eastern edge of the Chota Nagpur Plateau, India [J]. Regional Sustainability, 2024, 5(1): 100112-. |
[2] | Enoch YELELIERE, Philip ANTWI-AGYEI, Frank BAFFOUR-ATA. Impacts of climate change on the yields of leguminous crops in the Guinea Savanna agroecological zone of Ghana [J]. Regional Sustainability, 2023, 4(2): 139-149. |
[3] | WANG Jie, LIU Dongwei, TIAN Songni, HU Yuehong, MA Jiali, WANG Lixin. Coupling analysis of short-term weather and runoff in an arid lake basin of China [J]. Regional Sustainability, 2021, 2(3): 264-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||