Regional Sustainability ›› 2025, Vol. 6 ›› Issue (4): 100248.doi: 10.1016/j.regsus.2025.100248cstr: 32279.14.REGSUS.2025028
• Full Length Article • Previous Articles
FENG Xuyua,b,c, ZHAO Xiaoa,b,c, TONG Linga,b,c,*(), WANG Sufena,b,c, DING Rishenga,b,c, KANG Shaozhonga,b,c
Received:
2024-12-09
Accepted:
2025-08-18
Published:
2025-08-30
Online:
2025-09-15
Contact:
TONG Ling
E-mail:tongling2001@cau.edu.cn
FENG Xuyu, ZHAO Xiao, TONG Ling, WANG Sufen, DING Risheng, KANG Shaozhong. Impacts of land use and cover change on carbon storage: Multi-scenario projections in the arid region of Northwest China[J]. Regional Sustainability, 2025, 6(4): 100248.
Table 1
Details of data sources."
Category | Data | Original resolution (m) | Source |
---|---|---|---|
Natural factor | DEM | 30 | Geospatial Data Cloud ( |
Slope | 30 | Geospatial Data Cloud ( | |
Aspect | 30 | Geospatial Data Cloud ( | |
Temperature | 1000 | Resource and Environmental Science Data Center ( | |
Precipitation | 1000 | Resource and Environmental Science Data Center ( | |
Soil type | 1000 | Resource and Environmental Science Data Center ( | |
Distance to rivers | 1000 | National Catalogue Service For Geographic Information ( | |
Socio-economic factor | Population | 1000 | Resource and Environmental Science Data Center ( |
GDP | 1000 | Resource and Environmental Science Data Center ( | |
Distance to primary roads | 1000 | National Catalogue Service For Geographic Information ( | |
Distance to railways | 1000 | National Catalogue Service For Geographic Information ( | |
Nighttime light | 1000 | Resource and Environmental Science Data Center ( |
Table 2
Carbon density of different land use types in the study area."
Land use type | Cabove (Mg C/hm2) | Cbelow (Mg C/hm2) | Csoil (Mg C/hm2) | Cdead (Mg C/hm2) | Source |
---|---|---|---|---|---|
Cropland | 1.30 | 3.42 | 81.54 | 0.94 | Zhu et al. ( |
Orchard land | 1.57 | 4.10 | 97.85 | 1.13 | |
Forest and grassland | 8.66 | 5.34 | 109.67 | 2.16 | |
Water body | 0.19 | 0.06 | 0.00 | 0.00 | |
Construction land | 0.84 | 0.42 | 0.00 | 0.00 | |
Unused land | 0.63 | 0.16 | 26.27 | 0.00 |
Fig. 1.
Conceptual framework of this study. PLUS, patch-generating land use simulation; LUCC, land use and cover change; ND, natural development; CP, cropland protection; EC, ecological conservation; UD, urban development; LEAS, land expansion analysis strategy; CARS, cellular automata based on multiple random seeds; InVEST, integrated valuation of ecosystem services and trade-offs."
Table 3
Sample point summary and accuracy validation results."
Sample point/accuracy | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|
Cropland | 162 | 199 | 261 | 1387 | 2112 |
Orchard land | 104 | 99 | 155 | 495 | 839 |
Forest and grassland | 29 | 34 | 84 | 178 | 162 |
Water body | 73 | 60 | 52 | 81 | 58 |
Construction land | 8 | 10 | 14 | 70 | 83 |
Unused land | 113 | 91 | 114 | 72 | 40 |
Total | 489 | 493 | 680 | 2283 | 3294 |
Overall accuracy (OA) | 80.52 | 81.02 | 83.77 | 84.92 | 88.35 |
Kappa coefficient | 0.75 | 0.77 | 0.75 | 0.77 | 0.78 |
Table 4
Confusion matrix with misclassification and omission errors for the LUCC data in 2020."
Land use type | Cropland | Orchard land | Forest and grassland | Water body | Construction land | Unused land | Misclassification error (%) | Omission error (%) |
---|---|---|---|---|---|---|---|---|
Cropland | 554 | 22 | 5 | 0 | 7 | 0 | 7.67 | 5.78 |
Orchard land | 32 | 204 | 7 | 2 | 1 | 0 | 14.29 | 17.07 |
Forest and grassland | 6 | 8 | 28 | 1 | 0 | 0 | 33.33 | 34.88 |
Water body | 1 | 2 | 2 | 14 | 1 | 0 | 22.22 | 30.00 |
Construction land | 4 | 2 | 0 | 0 | 17 | 2 | 34.62 | 32.00 |
Unused land | 3 | 0 | 0 | 1 | 0 | 10 | 16.67 | 28.57 |
Table 5
Area and area proportion of different land use types from 2000 to 2020."
Land use type | Area (hm2) | Area proportion (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | |
Cropland | 81,706.66 | 105,440.41 | 111,705.49 | 196,033.99 | 197,449.21 | 20.96 | 27.05 | 28.65 | 50.29 | 50.65 |
Orchard land | 63,779.14 | 44,642.64 | 63,016.06 | 28,131.52 | 38,019.28 | 16.36 | 11.45 | 16.16 | 7.22 | 9.75 |
Forest and grassland | 5403.16 | 22,533.50 | 23,990.74 | 29,573.92 | 32,811.16 | 1.39 | 5.78 | 6.15 | 7.59 | 8.42 |
Water body | 53,667.46 | 46,484.16 | 36,075.14 | 31,525.75 | 33,086.16 | 13.77 | 11.92 | 9.25 | 8.09 | 8.49 |
Construction land | 1223.64 | 2276.43 | 2775.46 | 4756.73 | 14,732.73 | 0.31 | 0.58 | 0.71 | 1.22 | 3.78 |
Unused land | 184,054.38 | 168,456.64 | 152,271.16 | 99,812.72 | 73,736.16 | 47.21 | 43.21 | 39.06 | 25.60 | 18.91 |
Table 6
Carbon storage (unit: 104 Mg C) transition matrix in the study area from 2000 to 2020."
2000 | 2020 | |||||
---|---|---|---|---|---|---|
Cropland | Orchard land | Forest and grassland | Water body | Construction land | Unused land | |
Cropland | 0.00 | 32.54 | 14.82 | -7.11 | -25.32 | -1.80 |
Orchard land | -64.18 | 0.00 | 20.29 | -34.99 | -40.46 | -4.66 |
Forest and grassland | -10.74 | -1.81 | 0.00 | -5.91 | -5.30 | -0.52 |
Water body | 159.25 | 33.58 | 95.93 | 0.00 | 0.23 | 2.10 |
Construction land | 5.90 | 1.35 | 2.04 | -0.01 | 0.00 | 0.10 |
Unused land | 503.42 | 43.59 | 106.33 | -18.70 | -13.03 | 0.00 |
Table 7
Changes of carbon storage in the study area under multiple development scenarios for 2030."
Change in carbon storage | Land area (hm2) | Area proportion (%) | ||||||
---|---|---|---|---|---|---|---|---|
ND | CP | EC | UD | ND | CP | EC | UD | |
Decrease | 14,111.19 | 6236.37 | 49.41 | 10,320.30 | 3.62 | 1.60 | 0.01 | 2.65 |
No change | 348,463.35 | 351,953.28 | 361,993.23 | 378,162.09 | 89.39 | 90.35 | 92.86 | 97.00 |
Increase | 27,268.74 | 31,337.64 | 27,800.64 | 1360.89 | 6.99 | 8.05 | 7.13 | 0.35 |
Table S2
Multiple scenario transfer matrix setting."
Development scenario | Land use type | Cropland | Orchard land | Forest and grassland | Water body | Construction land | Unused land |
---|---|---|---|---|---|---|---|
ND | Cropland | 1 | 1 | 1 | 1 | 1 | 1 |
Orchard land | 1 | 1 | 1 | 1 | 1 | 1 | |
Forest and grassland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water body | 1 | 1 | 1 | 1 | 1 | 1 | |
Construction land | 0 | 0 | 0 | 0 | 1 | 0 | |
Unused land | 1 | 1 | 1 | 1 | 1 | 1 | |
CP | Cropland | 1 | 0 | 0 | 0 | 0 | 0 |
Orchard land | 1 | 1 | 0 | 0 | 0 | 0 | |
Forest and grassland | 1 | 1 | 1 | 0 | 0 | 0 | |
Water body | 1 | 1 | 0 | 1 | 0 | 0 | |
Construction land | 1 | 1 | 0 | 0 | 1 | 0 | |
Unused land | 1 | 1 | 0 | 0 | 0 | 1 | |
EC | Cropland | 1 | 1 | 1 | 0 | 0 | 0 |
Orchard land | 1 | 1 | 1 | 0 | 0 | 0 | |
Forest and grassland | 0 | 0 | 1 | 0 | 0 | 0 | |
Water body | 1 | 1 | 1 | 1 | 0 | 0 | |
Construction land | 1 | 1 | 1 | 1 | 1 | 0 | |
Unused land | 1 | 1 | 1 | 0 | 0 | 1 | |
UD | Cropland | 1 | 1 | 1 | 0 | 1 | 0 |
Orchard land | 0 | 1 | 1 | 0 | 1 | 0 | |
Forest and grassland | 0 | 0 | 1 | 0 | 1 | 0 | |
Water body | 0 | 0 | 0 | 1 | 1 | 0 | |
Construction land | 0 | 0 | 0 | 0 | 1 | 0 | |
Unused land | 0 | 0 | 1 | 1 | 1 | 1 |
Table S3
Configuration of various development scenarios for 2030."
Development scenario | Scenario description |
---|---|
ND | The land use and cover change (LUCC) patterns and transfer probabilities from 2000 to 2020 were retained. The 2020 land use data served as the baseline for simulating land use demand in 2030 under the ND scenario using the patch-generating land use simulation (PLUS) model. |
CP | This scenario prioritizes cropland protection to ensure national food security by limiting its conversion into other land use types. Specifically, it reduces the probability of converting cropland and orchard land into construction land by 60.00%, decreases the likelihood of conversion into forest and grassland and water body by 30.00%, strictly prohibits the conversion of cropland into unused land, and increases the probability of converting unused land into cropland and orchard land by 40.00%. |
EC | This scenario improves ecosystem quality by facilitating the conversion of land use types with low ecological quality index into ones with higher ecological quality index. Therefore, the conversion of forest and grassland to construction land is strictly restricted. Under this scenario, the probability of converting forest and grassland and water body into construction land was reduced by 60.00%, and the conversion of other land types into unused land was completely prohibited. The probability of converting cropland and orchard land into forest and grassland increased by 30.00%, and the probability of their conversion into construction land decreased by 40.00%. |
UD | This scenario enhances urban greening by minimizing the conversion of construction land into other land use types, while increasing the conversion of other land use types into construction land. Under this scenario, the probability of converting cropland, orchard land, forest and grassland, and water body into construction land increases by 40.00%, while the conversion of unused land into construction land increases by 100.00%. |
[1] | Alam S.A., Starr M., Clark B.J.F., 2013. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 89, 67-76. |
[2] | Ali J., Khan R., Ahmad N., et al., 2012. Random forests and decision trees. International Journal of Computer Science. 9(5), 272-278. |
[3] | Arneth A., Sitch S., Pongratz J., et al., 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 10(2), 79-84. |
[4] | Babbar D., Areendran G., Sahana M., et al., 2021. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean Prod. 278, 123333, doi: 10.1016/j.jclepro.2020.123333. |
[5] |
Bera B., Bhattacharjee S., Sengupta N., et al., 2022. Significant reduction of carbon stocks and changes of ecosystem service valuation of Indian Sundarban. Sci Rep. 12(1), 7809, doi: 10.1038/s41598-022-11716-5.
pmid: 35551238 |
[6] | Bolliger J., Hagedorn F., Leifeld J., et al., 2008. Effects of land-use change on carbon stocks in Switzerland. Ecosystems. 11(6), 895-907. |
[7] | Butsic V., Shapero M., Moanga D., et al., 2017. Using InVEST to assess ecosystem services on conserved properties in Sonoma County, CA. Calif. Agric. 71(2), 81-89. |
[8] | Chang X.Q., Xing Y.Q., Wang J.Q., et al., 2022. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 182, 106333, doi: 10.1016/j.resconrec.2022.106333. |
[9] | Chen C., Chen H.X., Liao W.M., et al., 2020. Dynamic monitoring and analysis of land-use and land-cover change using Landsat multitemporal data in the Zhoushan Archipelago, China. IEEE Access. 8, 210360-210369. |
[10] | Chen W.J., Lu Y.Q., Liu G.L., 2022. Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China. Growth Change. 53(3), 1122-1145. |
[11] | Cheng Y.Q., Song W., Yu H., et al., 2023. Assessment and prediction of landscape ecological risk from land use change in Xinjiang, China. Land. 12(4), 895, doi: 10.3390/land12040895. |
[12] |
Chu X., Zhan J.Y., Li Z.H., et al., 2019. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean Prod. 215, 382-389.
doi: 10.1016/j.jclepro.2018.12.296 |
[13] | Cohen W.B., Goward S.N., 2004. Landsat’s role in ecological applications of remote sensing. Bioscience. 54(6), 535-545. |
[14] | Ding C.R., 2009. Policy and planning challenges to promote efficient urban spatial development during the emerging rapid transformation in China. Sustainability. 1(3), 384-408. |
[15] | Du H.Y., Yu J.F., Zhang Y., et al., 2024. Land use optimization and carbon reserve assessment in the Shiyang River Basin. Environmental Science. 45(7), 4164-4176 (in Chinese). |
[16] | Du S.L., Zhou Z.F., Huang D.H., et al., 2023. The response of carbon stocks to land use/cover change and a vulnerability multi-scenario analysis of the karst region in southern China based on PLUS-InVEST. Forests. 14(12), 2307, doi: 10.3390/f14122307. |
[17] | Falkner R., 2016. The Paris Agreement and the new logic of international climate politics. Int. Aff. 92(5), 1107-1125. |
[18] | FAO (Food and Agriculture Organization of the United Nations), 2022. World Food and Agriculture—Statistical Yearbook 2022. Rome: FAO. |
[19] | Feng H.H., Wang S., Zou B., et al., 2023. Contribution of land use and cover change (LUCC) to the global terrestrial carbon uptake. Sci. Total Environ. 901, 165932, doi: 10.1016/j.scitotenv.2023.165932. |
[20] |
Florides G.A., Christodoulides P., 2009. Global warming and carbon dioxide through sciences. Environ. Int. 35(2), 390-401.
doi: 10.1016/j.envint.2008.07.007 pmid: 18760479 |
[21] | Friedlingstein P., O’Sullivan M., Jones M.W., et al., 2022. Global carbon budget 2022. Earth Syst. Sci. Data. 14(11), 4811-4900. |
[22] | Fu K.X., Jia G.D., Yu X.X., et al., 2024a. Analysis of temporal and spatial carbon stock changes and driving mechanism in Xinjiang region by coupled PLUS-InVEST-Geodector model. Environmental Science. 45(9), 5416-5430 (in Chinese). |
[23] | Fu Y.H., Huang M., Gong D.H., et al., 2023. Dynamic simulation and prediction of carbon storage based on land use/land cover change from 2000 to 2040: A case study of the Nanchang Urban Agglomeration. Remote Sens. 15(19), 4645, doi: 10.3390/rs15194645. |
[24] | Fu Y.J., Liu X.H., Sun X.L., et al., 2024b. Spatial-temporal variation of ecosystem carbon storage driven by land use in northwest inland desert resource region in recent 30 years. Geological Bulletin of China. 43(2-3), 451-462 (in Chinese). |
[25] | Gao L.N., Tao F., Liu R.R., et al., 2022a. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sust. Cities Soc. 85, 104055, doi: 10.1016/j.scs.2022.104055. |
[26] | Gao Y., Zhang Y.J., Zhou Q.X., et al., 2022b. Potential of ecosystem carbon sinks to “neutralize” carbon emissions: A case study of Qinghai in west China and a tale of two stages. Glob. Transit. 4, 1-10. |
[27] | Gao Z.Q., Zheng X.Y., Ning J.C., et al., 2015. A study on China’s LUCC and carbon-sink response with remote sensing. In: Gao, W., Chang, N.B., Wang, J.N., (eds.). Remote Sensing and Modeling of Ecosystems for Sustainability XII. Washington: SPIE, 110-114. |
[28] | Ge G.B.T., Shi Z.J., Zhu Y.J., et al., 2020. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 22, e00971, doi: 10.1016/j.gecco.2020.e00971. |
[29] | Geng L.L., Zhang Y.Y., Hui H.X., et al., 2023. Response of urban ecosystem carbon storage to land use/cover change and its vulnerability based on major function-oriented zone planning. Land. 12(8), 1563, doi: 10.3390/land12081563. |
[30] | Guo A.D., Yue W.Z., Yang J., et al., 2023. Cropland abandonment in China: patterns, drivers, and implications for food security. J. Clean. Prod. 418, 138154, doi: 10.1016/j.jclepro.2023.138154. |
[31] | Guo L.B., Gifford R.M., 2002. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 8(4), 345-360. |
[32] | Hairiah K., Sitompul S.M., van Noordwijk M., et al., 2001. Carbon stocks of tropical land use systems as part of the global C balance: effects of forest conversion and options for ‘clean development’ activities. [2024-11-17]. https://www.cifor-icraf.org/publications/downloads/Publications/PDFS/LN01034.PDF. |
[33] | Han M., Xu C.C., Long Y.X., et al., 2022. Simulation and prediction of changes in carbon storage and carbon source/sink under different land use scenarios in arid region of Northwest China. Bulletin of Soil and Water Conservation. 42(3), 335-344 (in Chinese). |
[34] | Hansen M.H., Li H., Svarverud R., 2018. Ecological civilization: Interpreting the Chinese past, projecting the global future. Global Environmental Change. 53, 195-203. |
[35] | He C.Y., Zhang D., Huang Q.X., et al., 2016. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Modell. Softw. 75, 44-58. |
[36] | Hong G.J., Xie J.B., Zhang L., et al., 2023. Monitoring soil salinization of cotton fields in the Aral Reclamation Area using multispectral imaging. Arid Zone Research. 41(5), 894-904 (in Chinese). |
[37] | Hou P., Gao J.X., Chen Y., et al., 2021. Development process and characteristics of China’s ecological protection policy. Acta Ecologica Sinica. 41(4), 1656-1667 (in Chinese). |
[38] | Hu X.Q., Li Z.W., Chen J., et al., 2021. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China. Int. Soil Water Conserv. Res. 9(2), 271-278. |
[39] | Jiang W.G., Deng Y., Tang Z.H., et al., 2017. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUS-S and the InVEST models. Ecol. Model. 345, 30-40. |
[40] | Jiang Y., Alifujiang Y., Feng P.P., et al., 2024. A simulated assessment of land use and carbon storage changes in the Yanqi Basin under different development scenarios. Land. 13(6), 744, doi: 10.3390/land13060744. |
[41] | Kong J.Q., Chen L.F., 2023. The changes in cropland pattern enhanced carbon storage in Northwest China. Agronomy. 13(11), 2736, doi: 10.3390/agronomy13112736. |
[42] |
Li J.K., Shao Z.L., 2024. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models. Arid Zone Research. 41(3), 499-508 (in Chinese).
doi: 10.13866/j.azr.2024.03.14 |
[43] | Li K.M., Cao J.J., Adamowski J.F., et al., 2021. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 39, 100641, doi: 10.1016/j.envdev.2021.100641. |
[44] | Li S.P., Cao Y.G., Liu J.L., et al., 2022a. Assessing spatiotemporal dynamics of land use and cover change and carbon storage in China’s ecological conservation pilot zone: A case study in Fujian Province. Remote Sens. 14(16), 4111, doi: 10.3390/rs14164111. |
[45] | Li X., Liu Z.S., Li S.J., et al., 2022b. Multi-scenario simulation analysis of land use impacts on habitat quality in Tianjin based on the PLUS model coupled with the InVEST model. Sustainability. 14(11), 6923, doi: 10.3390/su14116923. |
[46] | Li X.Y., Huang C.S., Jin H.J., et al., 2022c. Spatio-temporal patterns of carbon storage derived using the InVEST model in Heilongjiang province, Northeast China. Front. Earth Sci. 10, 846456, doi: 10.3389/feart.2022.846456. |
[47] | Li Y.G., Liu W., Feng Q., et al., 2022d. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. J. Environ. Manage. 312, 114911, doi: 10.1016/j.jenvman.2022.114911. |
[48] | Li Y.X., Liu Z.S., Li S.J., et al., 2022e. Multi-scenario simulation analysis of land use and carbon storage changes in Changchun City based on FLUS and InVEST model. Land. 11(5), 647, doi: 10.3390/land11050647. |
[49] | Liang X., Guan Q.F., Clarke K.C., et al., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 85, 101569, doi: 10.1016/j.compenvurbsys.2020.101569. |
[50] |
Liang X.Y., Jin X.B., Han B., et al., 2022. China’s food security situation and key questions in the new era: a perspective of farmland protection. J. Geogr. Sci. 32(6), 1001-1019.
doi: 10.1007/s11442-022-1982-9 |
[51] | Lin D., Huang X., Xu Z.Q., et al., 2023. Spatial distribution characteristics of the suitable salt leaching quota in typical irrigation areas of Southern Xinjiang based on SHAW model. Transactions of the Chinese Society of Agricultural Engineering. 39(1), 70-80 (in Chinese). |
[52] | Liu K., Zhang C.Z., Zhang H., et al., 2023. Spatiotemporal variation and dynamic simulation of ecosystem carbon storage in the loess plateau based on PLUS and InVEST models. Land. 12(5), 1065, doi: 10.3390/land12051065. |
[53] |
Liu X.J., Li X., Liang X., et al., 2019. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Tropical Geography. 39, 397-409 (in Chinese).
doi: 10.13284/j.cnki.rddl.003138 |
[54] | Liu X.W., Zhao C.L., Song W., 2017. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Pol. 67, 660-669. |
[55] | Liu Y.S., Zhou Y., 2021. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Pol. 109, 105699, doi: 10.1016/j.landusepol.2021.105699. |
[56] | Liu Z.X., Han Y., Zhu R.F., et al., 2024. Spatio-temporal land-use/cover change dynamics using spatiotemporal data fusion model and google earth engine in Jilin province, China. Land. 13, 924, doi: 10.3390/land13070924. |
[57] | Lu C., Qi X., Zheng Z.S., et al., 2022. PLUS-model based multi-scenario land space simulation of the lower Yellow River Region and its ecological effects. Sustainability. 14(11), 6942, doi: 10.3390/su14116942. |
[58] | Ma G.Q., Li Q.J., Zhang J.X., et al., 2023. Simulation and analysis of land-use change based on the PLUS model in the Fuxian Lake Basin (Yunnan-Guizhou Plateau, China). Land. 12(1), 120, doi: 10.3390/land12010120. |
[59] | Matemilola S., Fadeyi O., Sijuade T., 2020. Paris Agreement. Encyclopedia of Sustainable Management. Cham: Springer, 1-5. |
[60] | Meng S.S., Ding J.L., Wang J.J., et al., 2024. Impacts of changes in oasis farmland patterns on carbon storage in arid zones—A case study of the Xinjiang region. Land. 13(12), 2026, doi: 10.3390/land13122026. |
[61] | Natural Resources and Planning Bureau of Aral City, Xinjiang Production and Construction Corps, 2023. Territorial Space Master Plan of the First Division, Xinjiang Production and Construction Corps and Aral City (2021-2035). [2024-10-30]. http://www.ale.gov.cn/xwzx/tzgg/content_93343 (in Chinese). |
[62] | Nel L., Boeni A.F., Prohászka V.J., et al., 2022. InVEST soil carbon stock modelling of agricultural landscapes as an ecosystem service indicator. Sustainability. 14(16), 9808, doi: 10.3390/su14169808. |
[63] | Nguyen T., Huang J.Z., Nguyen T.T., 2015. Unbiased feature selection in learning random forests for high-dimensional data. The Scientific World Journal. 1, 471371, doi: 10.1155/2015/471371. |
[64] | Pachauri R.K., Allen M.R., Barros V.R., et al., 2014. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC. |
[65] | Piyathilake I.D.U.H., Udayakumara E.P.N., Ranaweera L.V., et al., 2022. Modeling predictive assessment of carbon storage using InVEST model in Uva province, Sri Lanka. Model. Earth Syst. Environ. 8(2), 2213-2223. |
[66] | Pontius R.G., Boersma W., Castella J., et al., 2008. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 42(1), 11-37. |
[67] | Salam M.A., Noguchi T., 2005. Impact of human activities on carbon dioxide (CO2) emissions: A statistical analysis. Environmentalist. 25(1), 19-30. |
[68] | Sánchez-Navarro V., Shahrokh V., Martínez-Martínez S., et al., 2022. Perennial alley cropping contributes to decrease soil CO2 and N2O emissions and increase soil carbon sequestration in a Mediterranean almond orchard. Sci. Total Environ. 845, 157225, doi: 10.1016/j.scitotenv.2022.157225. |
[69] | Santhosh L.G., Shilpa D.N., 2023. Assessment of LULC change dynamics and its relationship with LST and spectral indices in a rural area of Bengaluru district, Karnataka India. Remote Sens. Appl.-Soc. Environ. 29, 100886, doi: 10.1016/j.rsase.2022.100886. |
[70] | Shao Z.L., Chen C.Y., Liu Y.L., et al., 2023. Impact of land use change on carbon storage based on FLUS- InVEST model: A case study of Chengdu-Chongqing urban agglomeration, China. Land. 12(8), 1531, doi: 10.3390/land12081531. |
[71] | Sheykhmousa M., Mahdianpari M., Ghanbari H., et al., 2020. Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 6308-6325. |
[72] | Shi Q., Gu C.J., Xiao C., 2023. Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China. Sust. Cities Soc. 95, 104578, doi: 10.1016/j.scs.2023.104578. |
[73] | Solomon S., Plattner G.K., Knutti R., et al., 2009. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U. S. A. 106(6), 1704-1709. |
[74] | Statistical Bureau of Xinjiang Production and Construction Corps, 1990. Statistical Yearbook of Xinjiang Production and Construction Corps (1990). Beijing: China Statistics Press (in Chinese). |
[75] | Statistical Bureau of Xinjiang Production and Construction Corps, 2000. Statistical Yearbook of Xinjiang Production and Construction Corps (2000). Beijing: China Statistics Press (in Chinese). |
[76] | Statistical Bureau of Xinjiang Production and Construction Corps, 2010. Statistical Yearbook of Xinjiang Production and Construction Corps (2010). Beijing: China Statistics Press (in Chinese). |
[77] | Statistical Bureau of Xinjiang Production and Construction Corps, 2019. Statistical Yearbook of Xinjiang Production and Construction Corps (2019). Beijing: China Statistics Press (in Chinese). |
[78] | Su W., Liang D.M., Tang G.L., et al., 2017. Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification. IOP Conference Series: Earth and Environmental Science. 64, 012024, doi: 10.1088/1755-1315/64/1/012024. |
[79] | Tang L.P., Ke X.L., Zhou T., et al., 2020. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manage. 265, 110515, doi: 10.1016/j.jenvman.2020.110515. |
[80] | Tian L., Tao Y., Fu W.X., et al., 2022. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong province, China. Remote Sens. 14(10), 2330, doi: 10.3390/rs14102330. |
[81] | Vågen T.G., Winowiecki L.A., 2013. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. Environ. Res. Lett. 8(1), 015011, doi: 10.1088/1748-9326/8/1/015011. |
[82] | Varga O.G., Pontius Jr R.G., Singh S.K., et al., 2019. Intensity analysis and the figure of merit’s components for assessment of a cellular automata - Markov simulation model. Ecol. Indic. 101, 933-942. |
[83] | Wang L.G., Zhu R., Yin Z.L., et al., 2022a. Impacts of land-use change on the spatio-temporal patterns of terrestrial ecosystem carbon storage in the Gansu province, Northwest China. Remote Sens. 14(13), 3164, doi: 10.3390/rs14133164. |
[84] | Wang Z.Y., Li X., Mao Y.T., et al., 2022b. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 134, 108499, doi: 10.1016/j.ecolind.2021.108499. |
[85] | Watson R.T., Noble I.R., Bolin B., et al., 2000. Land Use, Land-use Change, and Forestry:A Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. |
[86] | Wen J.H., Wan C.C., Ye Q., et al., 2023. Disaster risk reduction, climate change adaptation and their linkages with sustainable development over the past 30 years: A review. Int. J. Disaster Risk Sci. 14(1), 1-13. |
[87] | Wu Q., Wang L., Wang T.Y., et al., 2024. Spatial-temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China. Ecol. Indic. 166, 112448, doi: 10.1016/j.ecolind.2024.112448. |
[88] | Wuyun D., Sun L., Chen Z.X., et al., 2022. The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of northern China. Sci. Total Environ. 805, 150286, doi: 10.1016/j.scitotenv.2021.150286. |
[89] | Xiang S.J., Wang Y., Deng H., et al., 2022. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 142, 109205, doi: 10.1016/j.ecolind.2022.109205. |
[90] | Xu C.L., Zhang Q.B., Yu Q., et al., 2023. Effects of land use/cover change on carbon storage between 2000 and 2040 in the Yellow River Basin, China. Ecol. Indic. 151, 110345, doi: 10.1016/j.ecolind.2023.110345. |
[91] | Xu H.Q., Wang Y.F., Guan H.D., et al., 2019. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 11(20), 2345, doi: 10.3390/rs11202345. |
[92] | Xu L.F., Liu X., Tong D., et al., 2022a. Forecasting urban land use change based on cellular automata and the PLUS model. Land. 11(5), 652, doi: 10.3390/land11050652. |
[93] | Xu P.S., Han Z.Q., Wu J., et al., 2022b. Emissions of greenhouse gases and NO from rice fields and a peach orchard as affected by N input and land-use conversion. Agronomy. 12(8), 1850, doi: 10.3390/agronomy12081850. |
[94] | Yan X., Li M., Guo D.F., et al., 2024. Spatial-temporal evolution and prediction of carbon storage in Mohe City by linking the Logistic-CA-Markov and InVEST models. Front. Earth Sci. 12, 1383237, doi: 10.3389/feart.2024.1383237. |
[95] |
Yang S.A., Li L.Q., Zhu R.H., et al., 2024. Assessing land-use changes and carbon storage: a case study of the Jialing River Basin, China. Sci Rep. 14(1), 15984, doi: 10.1038/s41598-024-66742-2.
pmid: 38987401 |
[96] |
Yao K.X., Halike A., Chen L.M., et al., 2022. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang. J. Arid Land. 14(3), 262-283.
doi: 10.1007/s40333-022-0011-2 |
[97] | Zhan J.Y., Wang C., Wang H.H., et al., 2024. Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China. Renew. Sust. Energ. Rev. 189, 113955, doi: 10.1016/j.rser.2023.113955. |
[98] | Zhang M., Huang X.J., Chuai X.W., et al., 2015. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: a spatial-temporal perspective. Sci Rep. 5(1), 10233, doi: 10.1038/srep10233. |
[99] | Zhang M., Liu Y.M., Wu J., et al., 2018. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess. Rev. 68, 90-97. |
[100] | Zhang S.H., Zhong Q.L., Cheng D.L., et al., 2022b. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 136, 108642, doi: 10.1016/j.ecolind.2022.108642. |
[101] | Zhang S.Q., Yang P., Xia J., et al., 2022a. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 833, 155238, doi: 10.1016/j.scitotenv.2022.155238. |
[102] | Zhao M.M., He Z.B., Du J., et al., 2019. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29-38. |
[103] | Zhou J.J., Zhao Y.R., Huang P., et al., 2020. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 118, 106803, doi: 10.1016/j.ecolind.2020.106803. |
[104] | Zhou Y., Li X.H., Liu Y.S., 2021. Cultivated land protection and rational use in China. Land Use Pol. 106, 105454, doi: 10.1016/j.landusepol.2021.105454. |
[105] | Zhou Y., Zhong Z., Cheng G.Q., 2023. Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019. Land Use Pol. 125, 106496, doi: 10.1016/j.landusepol.2022.106496. |
[106] | Zhu G.F., Qiu D.D., Zhang Z.X., et al., 2021. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 127, 107770, doi: 10.1016/j.ecolind.2021.107770. |
[107] | Zhu L.Y., Song R.X., Sun S., et al., 2022. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 142, 109178, doi: 10.1016/j.ecolind.2022.109178. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||