Regional Sustainability ›› 2021, Vol. 2 ›› Issue (1): 60-72.doi: 10.1016/j.regsus.2021.01.004cstr: 32279.14.j.regsus.2021.01.004
Previous Articles Next Articles
Muhammadjon Kobulieva,b,c,d, Tie Liua,b,d,e,*(), Zainalobudin Kobulievc, Xi Chena,b, Aminjon Gulakhmadova,b,c, Anming Baoa,b,e
Received:
2020-09-26
Revised:
2020-12-29
Accepted:
2021-01-25
Published:
2021-01-20
Online:
2021-03-11
Contact:
Tie Liu
E-mail:liutie@ms.xjb.ac.cn
Muhammadjon Kobuliev, Tie Liu, Zainalobudin Kobuliev, Xi Chen, Aminjon Gulakhmadov, Anming Bao. Effect of future climate change on the water footprint of major crops in southern Tajikistan[J]. Regional Sustainability, 2021, 2(1): 60-72.
Table 2
List of chosen predictor variables."
Variable | Predictor | Description of predictor | Partial R | P value |
---|---|---|---|---|
MaxT | p500 | 500 hPa geopotential | 0.477 | <0.0001 |
s850 | 850 hPa specific humidity | 0.422 | <0.0001 | |
temp | Air temperature at 2 m height | 0.718 | <0.0001 | |
MinT | p500 | 500 hPa geopotential | 0.389 | <0.0001 |
s850 | 850 hPa specific humidity | 0.407 | <0.0001 | |
temp | Air temperature at 2 m height | 0.677 | <0.0001 | |
Precipitation | p1_f | 1000 hPa wind speed | -0.056 | <0.05 |
prcp | Total precipitation | 0.049 | <0.05 |
Table 3
Statistical evaluation of statistical downscaling method (SDSM) performance with calibration (1975-1995) and validation (1996-2005)."
Variable | RMSE | R2 | DW | |||
---|---|---|---|---|---|---|
1975-1995 | 1996-2005 | 1975-1995 | 1996-2005 | 1975-1995 | 1996-2005 | |
MaxT | 1.661 | 2.158 | 0.973 | 0.957 | 1.525 | 1.637 |
MinT | 1.491 | 1.968 | 0.968 | 0.946 | 1.651 | 1.382 |
Precipitation | 2.642 | 2.487 | 0.649 | 0.546 | 1.948 | 1.556 |
Table 4
Mann-Kendall test results for temperature and precipitation for the periods 2021-2050 and 2051-2080."
Variable | Scenario | 2021-2050 | 2051-2080 | ||
---|---|---|---|---|---|
Z-value | Significance | Z-value | Significance | ||
MaxT | RCP2.6 | 3.99 | *** | -2.90 | ** |
RCP4.5 | 4.92 | *** | 1.44 | N | |
RCP8.5 | 9.99 | *** | 7.95 | *** | |
MinT | RCP2.6 | 4.38 | *** | -2.63 | ** |
RCP4.5 | 0.40 | N | 0.95 | N | |
RCP8.5 | 9.68 | *** | 6.39 | *** | |
Precipitation | RCP2.6 | 2.10 | * | 0.84 | N |
RCP4.5 | 0.30 | N | 0.58 | N | |
RCP8.5 | 1.60 | N | -2.10 | * |
Fig. 5.
Difference of seasonal changes in MaxT (a, b), MinT (c, d), and precipitation (e, f) under the RCP2.6, RCP4.5, and RCP8.5 for the study periods 2021-2050 and 2051-2080 compared with the baseline period. The positive values represent the increase of precipitation, while the negative values indicate the decrease of precipitation."
Table 5
MaxT, MinT, and precipitation increase in the Danghara for the six future decades compared with the baseline period."
Variable | Scenario | 2030s | 2040s | 2050s | 2060s | 2070s | 2080s |
---|---|---|---|---|---|---|---|
MaxT (°C) | RCP2.6 | 0.24 | 0.23 | 0.38 | 0.51 | 0.49 | 0.32 |
RCP4.5 | 0.25 | 0.33 | 0.41 | 0.57 | 0.67 | 0.66 | |
RCP8.5 | 0.26 | 0.56 | 0.81 | 0.88 | 1.24 | 1.45 | |
MinT (°C) | RCP2.6 | 0.27 | 0.27 | 0.40 | 0.45 | 0.49 | 0.32 |
RCP4.5 | 0.31 | 0.37 | 0.38 | 0.55 | 0.54 | 0.56 | |
RCP8.5 | 0.24 | 0.51 | 0.68 | 0.75 | 1.09 | 1.20 | |
Precipitation (mm) | RCP2.6 | 8.67 | 7.96 | 8.97 | 11.65 | 8.06 | 13.41 |
RCP4.5 | 8.27 | 5.79 | 10.18 | 11.86 | 10.16 | 10.75 | |
RCP8.5 | 10.19 | 10.22 | 12.44 | 10.25 | 8.72 | 8.21 |
Table 6
Comparison of the yield and water footprint (WFP) components of major crops in different countries during the different period."
Crop | ER (mm) | IR (mm) | CWR (mm) | Y (t/hm2) | GW (×106 m3/t) | BW (×106 m3/t) | WFP (×106 m3/t) | Country (data source) |
---|---|---|---|---|---|---|---|---|
Potato | 268 | 191 | 459 | 14.3 | 187 | 134 | 321 | Danghara (this study) |
- | - | 482 | 8.2 | 216 | 173 | 389 | Austria ( | |
204 | 147 | 351 | 19.0 | 104 | 79 | 183 | Cuba ( | |
Cotton | 133 | 943 | 1077 | 1.7 | 782 | 5547 | 6329 | Danghara (this study) |
64 | 968 | 1032 | 1.7 | 388 | 5858 | 6246 | Tajikistan ( | |
90 | 874 | 963 | 1.7 | 530 | 5141 | 5671 | Turkmenistan ( | |
Winter wheat | 347 | 198 | 544 | 2.5 | 1388 | 792 | 2180 | Danghara (this study) |
251 | 301 | 552 | 1.4 | 1788 | 2143 | 3931 | Tajikistan ( | |
- | - | 589 | 4.0 | 513 | 270 | 783 | Austria ( |
Fig. 6.
Average green water (GW), blue water (BW), and total water footprint (WFP) of potato, cotton, and winter wheat in the Danghara District in the baseline period 2004-2016. The upper whisker represents the maximum; the top of the box represents the upper consumption; the bottom of box represents the lower consumption; the band in the box represents the median; the black circle represents extreme value; and “×” represents the average value of cultivars water footprint."
Fig. 8.
Changes in the WFP of potato, cotton, and winter wheat in the Danghara District for the periods 2021-2050 and 2051-2080 compared with the baseline period. The positive values of days represent earlier than optimal sowing dates (5 and 10 d earlier), while negative values of days indicate later than optimal sowing dates (5 and 10 d later)."
Table 7
Variations in crop water requirement (CWR) and WFP of major crops for optimum sowing date under the three RCPs for the periods 2021-2050 and 2051-2080 compared with the baseline period."
Future period | Crop | Scenario | ER (mm) | IR (mm) | CWR (mm) | GW (×106 m3/t) | BW (×106 m3/t) | WFP (×106 m3/t) |
---|---|---|---|---|---|---|---|---|
2021-2050 | Potato | RCP2.6 | 28.0 | -54.3 | -26.3 | 20.0 | -38.4 | -18.4 |
RCP4.5 | 31.9 | -58.1 | -26.2 | 22.7 | -41.1 | -18.3 | ||
RCP8.5 | 32.4 | -57.7 | -25.3 | 23.1 | -40.8 | -17.7 | ||
Cotton | RCP2.6 | 19.1 | -7.2 | 10.9 | 112.7 | -42.3 | 70.4 | |
RCP4.5 | 18.5 | -6.1 | 11.4 | 109.2 | -35.8 | 73.4 | ||
RCP8.5 | 17.7 | -3.2 | 13.5 | 104.5 | -18.8 | 85.7 | ||
Winter wheat | RCP2.6 | 32.6 | -38.9 | -5.3 | 98.4 | -171.6 | -73.2 | |
RCP4.5 | 37.1 | -42.5 | -4.4 | 116.4 | -186 | -69.6 | ||
RCP8.5 | 39.2 | -43.1 | -2.9 | 124.8 | -188.4 | -63.6 | ||
2051-2080 | Potato | RCP2.6 | 38.4 | -64.5 | -26.1 | 27.3 | -45.5 | -18.3 |
RCP4.5 | 40.0 | -65.3 | -25.3 | 28.4 | -46.1 | -17.7 | ||
RCP8.5 | 33.1 | -55.3 | -22.2 | 23.6 | -39.1 | -15.5 | ||
Cotton | RCP2.6 | 19.1 | -5.8 | 12.3 | 112.7 | -34.1 | 78.6 | |
RCP4.5 | 20.0 | -4.5 | 14.5 | 118.0 | -26.4 | 91.6 | ||
RCP8.5 | 17.8 | 7.7 | 24.5 | 105.1 | 45.4 | 150.4 | ||
Winter wheat | RCP2.6 | 43.4 | -49.2 | -4.8 | 141.6 | -212.8 | -71.2 | |
RCP4.5 | 45.6 | -50.1 | -3.5 | 150.4 | -216.4 | -66.0 | ||
RCP8.5 | 39.3 | -39.1 | 1.2 | 125.2 | -172.4 | -47.2 |
[1] |
Abid, M., Schilling, J., Scheffran, J., et al., 2016. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 547, 447-460.
doi: 10.1016/j.scitotenv.2015.11.125 pmid: 26836405 |
[2] | Aldaya, M.M., Hoekstra, A.Y., 2010. Water footprint of cotton, wheat and rice production in Central Asia. Value of Water Research Report 41. Delft: UNESCO-IHE Institute for Water Education. |
[3] | Allen, R., Pereira, L., Raes, D., et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. In: Allen R.G., Pereira L.S., Martin S.D.R. FAO Irrigation and Drainage Paper 56. Rome, Italy. |
[4] | Atkin, M., 1997. Tajikistan’s civil war. Curr. Hist., 96(612), 336-340. |
[5] | Aziz, A., Nassim, J., Tunwar, N.S., et al., 2008. Tajikistan reducing the impact of price surge and agriculture rehabilitation programme. FAO Appraisal Document. Dushanbe, Tajikistan. |
[6] | Barbone, L., Reva, A., Zaidi, S., 2010. Tajikistan: key priorities for climate change adaptation. In: World Bank Policy Research Working Paper No. 5487. Washington DC, USA. |
[7] | Bernauer, T., Siegfried, T., 2012. Climate change and international water conflict in Central Asia. J. Peace Res. 49, 227-239. |
[8] | Bulsink, F., Hoekstra, A.Y., Booij, M.J., 2010. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 14, 119-128. |
[9] | Cabello, J.J., Sagastume, A., Bastida, E.L., et al., 2016. Water footprint from growing potato crops in Cuba. Tecnol. Cienc. Agua. 7(1), 107-116. |
[10] | Cao, X.C., Wu, P.T., Wang, Y.B., et al., 2015. Challenge of water sources in urbanizing China: an analysis of agricultural water footprint. Polish J. Environ. Stud. 24(1), 9-18. |
[11] |
Cao, X.C., Wu, M.Y., Guo, X.P., et al., 2017. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 609, 587-597.
doi: 10.1016/j.scitotenv.2017.07.191 pmid: 28763656 |
[12] | Castellanos, M.T., Cartagena, M.C., Requejo, M.I., et al., 2016. Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agric. Water Manag. 170, 81-90. |
[13] | Chapagain, A.K., Hoekstra, A.Y., 2004. Water Footprints of Nations. Value of Water Research Report Series No. 16. Delft: Unesco-IHE Institute for Water Education. |
[14] | Christmann, S., Aw-Hassan, A.A., 2015. A participatory method to enhance the collective ability to adapt to rapid glacier loss: the case of mountain communities in Tajikistan. Clim. Change. 133, 267-282. |
[15] | Closset, M., Dhehibi, B.B.B., Aw-Hassan, A., 2015. Measuring the economic impact of climate change on agriculture: a Ricardian analysis of farmlands in Tajikistan. Clim. Dev. 7, 454-468. |
[16] | Collins, K., 2009. Economic and Security Regionalism among Patrimonial Authoritarian Regimes: The Case of Central Asia. Eur. Asia. Stud. 61, 249-281. |
[17] | Dai, A., 2011. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Chang. 2, 45-65. |
[18] | Dai, A., 2013. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52-58. |
[19] | Dumont, A., Salmoral, G., Llamas, M.R., 2013. The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain). Water Resour. Ind. 1- 2, 60-76. |
[20] | Egan, M., 2011. The water footprint assessment manual. Setting the global standard. Soc. Environ. Account. J. 31, 181-182. |
[21] | Hellegers, P., Zilberman, D., Steduto, P., et al., 2008. Interactions between water, energy, food and environment: evolving perspectives and policy issues. Water Policy. 10, 1-10. |
[22] | Henley, J.S., Assaf, G.B., 1996. The challenge for industrial development in the Central Asian republics of the former Soviet Union. MOCT-MOST Econ. Policy Transitional Econ. 6, 111-137. |
[23] | Herath, I.K., 2013. The water footprint of agricultural products in New Zealand: the impact of primary production on water resources. PhD Dissertation. Palmerston North: Institute of Agriculture and Environment, Massey University. |
[24] | Hoekstra, A.Y., Chapagain, A.K., Savenije, H., et al., 2005. Globalization of Water: Sharing the Planet's Freshwater Resources. Oxford: Blackwell Publishing, 103-130. |
[25] | Hoekstra, A., Chapagain, A., Aldaya, M., et al., 2009. Water Footprint Manual: State of the Art. Enschede: Water Footprint Network, 1-121 |
[26] | Hoekstra, A., Chapagain, A., Aldaya, M., et al., 2011. The Water Footprint Assessment Manual. London and Washington: Earthscan, 206. |
[27] |
Hoekstra, A.Y., Mekonnen, M.M., 2012. The water footprint of humanity. Proc. Natl. Acad. Sci. 109, 3232-3237.
pmid: 22331890 |
[28] | Huang, H., Han, Y., Jia, D., 2019. Impact of climate change on the blue water footprint of agriculture on a regional scale. Water Sci. Technol. Water Supply. 19, 52-59. |
[29] |
Institute of Public Policy and Administration. 2016. National Development Strategy of the Republic of Tajikistan for the Period up to 2030. Government Report. https://nafaka.tj/images/zakoni/new/strategiya_2030_en.pdf. (in Russian).
pmid: 12313929 |
[30] | International Potato Center. 2016. Research on Local Seed Potato Value Chain Gaps and Bottlenecks in Khatlon Tajikistan. Khatlon, Tajikistan. https://hdl.handle.net/10568/77151. |
[31] | IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 151. |
[32] |
Jalilov, S., Keskinen, M., Varis, O., et al., 2016. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 539, 648-661.
doi: 10.1016/j.jhydrol.2016.05.071 |
[33] | Johnson, M.S., Lathuillière, M.J., Tooke, T.R., et al., 2015. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees. Environ. Res. Lett. 10(6), 064007. |
[34] | Kobuliev, M., Liu, T., Li, Y., et al., 2020. Assessing green and blue water utilization in wheat production of Tajikistan: A survey of Regions, 1980-2015. East Eur. Sci. J. 56(4), 38-44. |
[35] | Lioubimtseva, E., Cole, R., Adams, J.M., et al., 2005. Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ. 62, 285-308. |
[36] | Lioubimtseva, E., Henebry, G.M., 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 73, 963-977. |
[37] |
Lutz, A.F., Immerzeel, W.W., Shrestha, A.B., et al., 2014. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 4, 587-592.
doi: 10.1038/nclimate2237 |
[38] |
Min, S.K., Zhang, X., Zwiers, F., 2008. Human-induced arctic moistening. Science. 320, 518-520.
pmid: 18440925 |
[39] |
Min, S.K., Zhang, X., Zwiers, F.W., et al., 2011. Human contribution to more-intense precipitation extremes. Nature. 470, 378-381.
pmid: 21331039 |
[40] | Morgounov, A.I., Braun, H., Ketata, H., et al., 2005. International cooperation for winter wheat improvement in Central Asia: results and perspectives. Turk. J. Agric. For. 29(2), 137-142. |
[41] | Odinaev, M.M., Yang, D.G., Alieva, S., et al., 2018. The evolution process and economic growth on the example of the industry of the Republic of Tajikistan. East Eur. Sci. J. 34(6), 4-9. |
[42] |
Olsson, O., Ikramova, M., Bauer, M., et al., 2010. Applicability of adapted reservoir operation for water stress mitigation under dry year conditions. Water Resour. Manag. 24, 277-297.
doi: 10.1007/s11269-009-9446-x |
[43] | Ouhamdouch, S., Bahir, M., 2017. Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira Basin, Morocco). Environ. Process. 4, 975-990. |
[44] | Parry, M., Rosenzweig, C., Livermore, M., 2005. Climate change, global food supply and risk of hunger. Philos. Trans. R. Soc. B Biol. Sci. 360, 2125-2138. |
[45] | Parvaze, S., Parvaze, S., Khurshid, N., et al., 2016. Projected change in climate under A2 scenario in Dal Lake catchment area of Srinagar City in Jammu and Kashmir. Curr. World Environ. 11, 429-438. |
[46] | Pohlert, T., 2016. Non-parametric Trend Tests and Change-point Detection. http://cran.ms.unimelb.edu.au/web/packages/trend/trend.pdf. |
[47] |
Pomfret, R., Anderson, K., 2001. Economic development strategies in Central Asia since 1991. Asian Stud. Rev. 25, 185-200.
doi: 10.1080/10357820108713304 |
[48] | Pulatov, Y.E., 2017. Water-saving irrigation technologies and water use efficiency in agriculture. Eco. Constr. 4, 21-26. |
[49] |
Rasul, G., 2014. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy. 39, 35-48.
doi: 10.1016/j.envsci.2014.01.010 |
[50] | Savitskiy, A.G., Schlüter, M., Taryannikova, R.V., et al., 2008. Current and future impacts of climate change on river runoff in the Central Asian river basins. In: Pahlwostl, C., Kabat, P., Möltgen, J., Adaptive and Integrated Water Management. Heidelberg, Berlin: Springer Berlin Heidelberg, 323-339. |
[51] | Smith, M., Kivumbi, D., Heng, L.K., 2002. Use of the FAO CROPWAT model in deficit irrigation studies. FAO: Water Reports. 22, 17-27. |
[52] | Stewart, B.A., Lal, R., 2018. Managing water to enhance global cereal yields. J. Soil Water Conserv. 73, 49A-52A. |
[53] | Tahir, T., Hashim, A.M., Yusof, K.W., 2018. Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM. In: IOP Conference Series: Earth and Environmental Science, Volume 140, 4th International Conference on Civil and Environmental Engineering for Sustainability. Langkawi: IConCEES 2017. |
[54] | Tajikistan Statistics Bureau, 2010. Agriculture. Dushanbe: Irfon Press, 87-161. oldstat.ww.tj/img/c6617c2a140f969428b790ea690b13d9_1293210240.zip. (in Russian). |
[55] | Tajikistan Statistics Bureau, 2017. Agriculture. Dushanbe: Irfon Press, 91-196. http://stat.ww.tj/13b992a6b19499d948c865b3572cb4a1_1510580431.pdf. (in Russian). |
[56] | Thaler, S., Gobin, A., Eitzinger, J., 2017. Water Footprint of main crops in Austria. Die Bodenkultur: J. L. Manag. Food Environ. 68(1), 1-15. |
[57] | Turok, J., Begmuratov, M.K., Akramov, K., et al., 2013. Agricultural Research Collaboration in Tajikistan (14th ed.). In: Working Papers 253803, International Center for Agricultural Research in the Dry Areas (ICARDA). Beirut, Lebanon. |
[58] | van Vuuren, D.P., Edmonds, J., Kainuma, M., et al., 2011. The representative concentration pathways: an overview. Clim. Change. 109, 5-31. |
[59] | Wilby, R.L., Dawson, C.W., Barrow, E., 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 17(2), 145-157. |
[60] | Wilby, R.L., Dawson, C.W., 2007. SDSM 4.2—A Decision Support Tool for the Assessment of Regional Climate Change Impacts User Manual. London: UK Environment Agency, 1-64. |
[61] | Wilby, R.L., Dawson, C.W., 2013. The statistical downscaling model: insights from one decade of application. Int. J. Climatol. 33, 1707-1719. |
[62] | World Bank. 2009. Adapting to Climate Change in Europe and Central Asia. World Bank Other Operational Studies 3052. Washington: Sustainable Development Department Europe and Central Asia Region World Bank Press, 116. |
[63] | Yang, J., Fang, G., Chen, Y., et al., 2017. Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging. J. Arid Land. 9, 622-634. |
[64] | Zhao, R., He, H.L., Zhang, N., 2015. Regional water footprint assessment: a case study of Leshan City. Sustainability. 7, 16532-16547. |
[65] |
Zhuo, L., Mekonnen, M.M., Hoekstra, A.Y., 2016. Consumptive water footprint and virtual water trade scenarios for China—With a focus on crop production, consumption and trade. Environ. Int. 94, 211-223.
pmid: 27262784 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||